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Abstract

In recent years the analysis of their community structure gave im-
portant insights into the functionality of many complex systems.
Originating in the Social Sciences this approach has been success-
fully applied to neuronal networks, human traffic data, and many
other fields. However, while analysing this mesoscale structure only
minor attention was given to the position, or role, individual nodes
present in it. I propose a multidimensional framework that captures
this and therefore identifies important nodes. Those tools are then
applied to well-known synthetic networks as well as neuronal con-
nectivity data, extreme precipitation measurements, and a traffic
network.

To be more specific, in this thesis, firstly former attempts to mea-
sure such mesoscale contribution are reviewed. We then define
local and global hubness indices to parameterise the relevance of
nodes locally within their community and globally on the whole
network. Another crucial attribute is the contribution of nodes to
the different modules in the network. For analysing that participa-
tion vectors are introduced, representing the likelihood of nodes
to belong to each community; these account for inhomogenous
relative sizes of the communities. Information in the participation
vectors is reduced to two scalar indices. The dispersion index char-
acterises how difficult it is to classify a node in one and only one
community and the participation index indicates how uniformly
the links of a node are distributed among all the communities.
Combining those measures leads to a four-dimensional mapping of
the role individual nodes have in the mesoscale of networks.

An exemplary graph that illustrates the different contributions
a node might have in a network’s mesoscale is analysed. The be-
haviour of well-known network models as regular, random, and
scale-free graphs gives further insights. It can be shown that syn-
thetic graphs with intrinsic modular structure do inherit very dif-
ferent behaviour. To model a combination of modular organisation
and hub structure I then introduce a new model that shows similar
behaviour as the neuronal networks analysed afterwards. Those
networks from the Caenorhabditis elegans, cat, macaque, and human
neuronal systems show striking similarities in terms of the intro-
duced measures, despite being of different nature and size. All four
networks show an interplay of segregation and integration, features
that are known to be necessary for effective information processing.

I apply those measures to networks constructed from rainfall
data of the Indian Summer Monsoon. The community structure
analysis shows that modules tend to be shaped by natural topolog-
ical boundaries as mountain chains in interplay with the onshore
movement of moist air masses originating from the Indian Ocean.
The further investigation of the role individual sites have in this
structure show that North Pakistan is the most dominant region
in terms of extreme precipitation synchronisation. This matches
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with earlier analysis with other graph theoretical tools and this in-
sight might be used by climatologists for the estimation of monsoon
onsets.

Finally I generalise those tools in order to measure the participa-
tion of nodes in different layers of a multilayer network. Its utility
is demonstrated by applying it to the European Air Transport Net-
work that connects airports with direct flights of different airlines.
The analysis shows that airlines are most strongly competing for
airports in the holiday regions of southern Europe. Interestingly,
major airlines and low cost airlines have striking structural differ-
ences that are directly based on the need of the latter to minimise
expenses in order to provide a profit while offering affordable tick-
ets to their customers.

To conclude, this thesis introduces new measures for the anal-
ysis of individual node’s position in the mesoscopic formation of
networks. Their behaviour on synthetic graphs is illustrated, fol-
lowed by the use on networks arising from very different sub-fields
of network science. I hope that those tools will be useful for fellow
researchers in order to decode the interplay between structure and
function in networks.

This thesis is in parts based on the following manuscript:
Florian Klimm, Javier Borge-Holthoefer, Niels Wessel, Jürgen
Kurths, and Gorka Zamora-López. Individual node’s contribu-
tion to the mesoscale of complex networks. New Journal of Physics
(submitted), 2014
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Zusammenfassung

In vielen Zusammenhängen ist es sinnvoll komplexe Systeme als
Netzwerke zu repräsentieren und deren Gemeinschaftsstruktur zu
untersuchen. Dieser, ursprünglich aus den Sozialwissenschaften
stammende, Ansatz wurde in den letzten Jahren erfolgreich auf
neuronale Netzwerke, Daten menschlicher Bewegungen und viele
weiterer Gebiete angewendet. Jedoch wurde bei der Analyse der
Position, oder Rolle, einzelner Knoten in der mesoskalen Struk-
tur nur geringe Aufmerksamkeit geschenkt. Hier führen wir eine
multidimensionale Methode ein, die dies untersucht und damit
wichtige Knoten identifiziert. Dies Methode wird auf bekannte Net-
zwerkmodelle, neuronale Netzwerke, Netzwerke extremer Nieder-
schlagsmessung und ein Verkehrsnetzwerk angewandt.

In dieser Arbeit befassen wir uns zunächst mit zwei bereits
bekannte Konzepten um die mesoskale Struktur zu analysieren.
Dann schlagen wir die folgenden vier Maße vor: local hubness misst
die Wichtigkeit eines Knoten in seinem eigenen Modul und global
hubness im gesamten Netzwerk. Participation (’Teilnahme’) und Dis-
persion (’Verteilung’) sind Maße für die Verteilung der Nachbarn
eines Knoten in den Modulen des Netzwerkes. Hierfür definieren
wir participation vectors (’Teilnahmevektoren’) deren Elemente die
Zugehörigkeit der Knoten zu den verschiedenen Gemeinschaften
repräsentieren. Hierbei berücksichtigen wir, anders als bisherige
Ansätze, die unterschiedliche Größe der Module. Um die Interpre-
tation zu erleichtern fassen wir die Information der Vektoren in
zwei skalaren Größen zusammen. Dispersion quantifiziert die Zuge-
hörigkeit eines Knotens zu seinem eigenen Modul und participation
misst die Verteilung der Nachbarn eines Knotens zwischen allen
Modulen des Netzwerks.

Wir erläutern die Funktion der verschiedenen Indizes auf einem
Beispielgraphen. Dann untersuchen wir das Verhalten verschiedener
künstlicher Netzwerke wie Zufallsgraphen und skalenfreie Net-
zwerke. Es kann gezeigt werden, dass sich Graphen mit intrin-
sischer modularer Struktur deutlich im Verhalten unterscheiden.
Um eine Kombination aus modularer und skalenfreier Struktur
zu simulieren führen wir ein neues Model ein. Dies zeigt ähn-
liches Verhalten wie die neuronalen Netzwerke die wir danach
untersuchen. Diese stammen von Caenorhabditis elegans, Katze,
Makakeaffe und Mensch und haben alle ausgeprägte Gemein-
samkeiten, obwohl sie sich in ihrer Größe und Art unterscheiden.
Sie alle zeigen Anzeichen von Segregation und Integration, zwei
Konzepte die bekanntermaßen wichtig für die Informationsbear-
beitung in neuronalen Systemen sind.

Anschließend wenden wir die entwickelte Methodik auf Kli-
manetzwerke an und untersuchen damit den extremen Nieder-
schlag während des indischen Sommermonsuns. Die aufgedeckte
Gemeinschaftsstruktur ist stark durch natührliche Erhebungen und
deren Einfluss auf die Luftbewegungen geprägt. Die genauere Un-
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tersuchung einzelner Orte in dieser Struktur offenbart, dass Gebiete
in Nordpakistan besonders hohen Einfluss auf die Synchronisation
des extremen Regenfalls haben. Dies ist in Übereinstimmung mit
bisherigen Erkenntnissen die anderen Methoden der Netzwerkanal-
yse nutzten. Diese Einsichten sind wichtig für die Untersuchung
und Vorhersage des Monsuns.

Im letzten Kapitel werden die vorgestellten Indexe angepasst,
um sie auf Netzwerke mit verschiedenen Arten von Kanten anzuwen-
den (multilayer networks). Dies wenden wir auf ein Netzwerk der
europäischen Flughäfen an, die durch Flüge verschiedener Airlines
verbunden sind. Die Untersuchung zeigt, dass Airlines Flughäfen
in den Urlaubsregionen in Südeuropa besonders stark nutzen. Des
weiteren zeigen große Fluggesellschaften und Billigflieger struk-
turelle Unterschiede, da letztere ihre Ausgaben minimieren müssen.

Der zentrale Punkt der Arbeit ist die Definition der neuen In-
dizes um den Einfluss einzelner Knoten in der modularen Struktur
eines Netzwerkes zu quantifizieren. Die Funktion dieser Indices
wird zunächst anhand künstlicher Netzwerke verdeutlicht und
dann auf reale Netzwerke erschiedenster Bereiche angewendet. Ich
hoffe, dass diese Methoden von anderen Wissenschaftler angenom-
men werden, um Struktur und Funktion in Netzwerken besser zu
verstehen.
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Introduction

The representation of real systems as complex networks has become
a successful practice in the literature across different scientific disci-
plines: biology, technology, sociology, climatology, etc [2] [3] [4] [5]. [2] Mark Newman. Networks: An

Introduction. Oxford University Press,
2010

[3] Ed Bullmore and Olaf Sporns.
Complex brain networks: graph
theoretical analysis of structural and
functional systems. Nature Reviews
Neuroscience, 10(3):186–198, 2009

[4] Björn H Junker and Falk Schreiber.
Analysis of biological networks, volume 2.
John Wiley & Sons, 2008

[5] Jonathan F Donges, Yong Zou,
Norbert Marwan, and Jürgen Kurths.
Complex networks in climate dynam-
ics. The European Physical Journal-Special
Topics, 174(1):157–179, 2009

Graph analysis allows to describe the topological organisation of
the constituents of a multi-component system and uncover their
functional implications. There exist a wide variety of graph mea-
sures to explore the structural organisation of networks across dif-
ferent scales, from local node properties to global organisation. The
intermediate scale, the mesoscopic scale, has also received significant
attention through investigation of modular structure present in the
vast majority of real networks. Most efforts have focused on the
determination of the modules, a computational problem commonly
referred as the community detection problem [6] [7] [8] [9], rather than

[6] Michelle Girvan and Mark E. J.
Newman. Community structure
in social and biological networks.
Proceedings of the National Academy of
Sciences, 99(12):7821–7826, 2002

[7] Santo Fortunato. Community
detection in graphs. Physics Reports,
486(3):75–174, 2010

[8] Leon Danon, Albert Diaz-Guilera,
Jordi Duch, and Alex Arenas. Compar-
ing community structure identification.
Journal of Statistical Mechanics: Theory
and Experiment, 2005(09):P09008, 2005

[9] Andrea Lancichinetti and Santo
Fortunato. Community detection
algorithms: a comparative analysis.
Physical review E, 80(5):056117, 2009

on describing the mesoscale itself in an informative manner. Be-
sides community detection, in many real networks the nodes are
classified into categories based on meta-information about their
real-world allocation. Geographically embedded networks such
as power-grids, the internet at the autonomous system level or the
airport transportation networks can be subdivided into countries
or continents. Agents of social networks may be classified accord-
ing to gender, race, age or any other categories found in social
structures.The remaining challenge is then, once a classification is
known that segregates nodes into groups, how to characterise the
interrelations between them and the function every node takes. A
very special type of mesoscale structure is the grouping into dif-
ferent types of interactions, organised in layers. The deciphering of
the contribution of individual nodes in such an organisation just
recently started to be discussed [10]. [10] Federico Battiston, Vincenzo

Nicosia, and Vito Latora. Structural
measures for multiplex networks.
Physical Review E, 89(3):032804, 2014

The first sound investigation about the analysis of the roles
of nodes in relation to the community structure happened in the
framework of the social sciences [11] [12] [13]. Using block-models [11] C W Harrison, S A Boorman, and

R L Breiger. Social structure from
multiple networks. I. Blockmodels of
roles and positions. American Journal of
Sociology, 81:730–780, 1976

[12] S A Boorman and C W Harrison.
Social structure from multiple net-
works. II. Role structures. American
Journal of Sociology, 81:1384–1446, 1976

[13] Francois Lorrain and Harrison C
White. Structural equivalence of indi-
viduals in social networks. The Journal
of mathematical sociology, 1(1):49–80,
1971

they characterised the roles of cliques in the social structure, e.g.
identifying the leaders of two opposing groups in a monastery.
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Figure 1: Roles of nodes in the
mesoscale can simplified be mapped in
a 2-dimensional space: A measure of
participation (horizontal axis) validates
whether a node has neighbours only in
its own modules (peripheral), mostly
in its own but also in others (connec-
tor), or evenly distributed amongst all
(kinless). On the vertical measure the
importance of a node is measures as
hubness, the majority of nodes will be
non-hubs and only a small amount of
them has an exclusive position, mak-
ing them hubs. In terms of information
processing the low participation nodes
will allow the segregated handling
of information and the connector
and kinless hubs will integrate the
information from different modules.

More recently, Guimerà & Amaral characterised the roles of
nodes according to two parameters: an indicator of the hubness
and a participation index assessing how distributed are the links
of a node across communities [14] [15]. In another effort, Arenas[14] Roger Guimera and Luís A. Nunes

Amaral. Cartography of complex
networks: modules and universal roles.
Journal of Statistical Mechanics: Theory
and Experiment, 2005(02):P02001, 2005

[15] Roger Guimera and Luis A Nunes
Amaral. Functional cartography of
complex metabolic networks. Nature,
433(7028):895–900, 2005

and coauthors introduced a formalism to study the mesoscale of
complex networks based on a dimensionallity reduction of the
community structure [16].

[16] Alex Arenas, Javier Borge-
Holthoefer, Sergio Gomez, and Gorka
Zamora-Lopez. Optimal map of
the modular structure of complex
networks. New Journal of Physics,
12(5):053009, 2010

In this thesis a set of graph descriptors is introduced in order to
characterise the position every node takes within the modular and
hierarchical architecture of complex networks overcoming limita-
tions of previous approaches. This characterisation is a multidimen-
sional problem and define parameters with a direct interpretation
in terms of basic graph properties. Contrary to previous efforts, it is
considered that communities are often inhomogeneous and account
for the likelihood of nodes to belong to each community depending
on their sizes.

Segregation and integration in neuronal networks
[17] Danielle S. Bassett and ED Bull-
more. Small-world brain networks. The
Neuroscientist, 12(6):512–523, 2006

For illustration we apply our framework to a set of physiological
networks. First, we investigate the neuronal network of the nema-
tode Caernohabditis elegans and the anatomical connectivity between
cortical regions in cats, and humans. These are known to inherit
a highly complex architecture due to the variety of information
processes they host at multiple scales [18]. Therefore graph theory[18] Florian Klimm, Danielle S. Bassett,

Jean M. Carlson, and Peter J. Mucha.
Resolving structural variability in
network models and the brain. PLoS
Comput Biol, 10(3):e1003491, 03 2014

is an appropriate tool for analysing this highly complex structure.
A modular and hierarchical structure is known to be important in
neuronal networks[17]. We use the representation of node’s roles
in the modular structure in order to show that the structure of neu-
ronal networks is optimised to process information in a way that
combines specialisation and integration [19]. Those two features are[19] O. Sporns and G. M. Tononi.

Classes of network connectivity and
dynamics. Complexity, 7(1):28–38, 2001

known to coexist thanks to the combination of modular differentia-
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Figure 2: Segregation and integration
are two coexisting features in neuronal
networks. Segregation refers to the
clustering into distinct modules (solid
boxes). There information of differ-
ent kinds and sensory inputs can be
processed in a parallel manner. The
different modules can be very different
in size and their intrinsic organisation
and density since the tasks are diverse
as well. However, in order to enable an
efficient information processing the in-
formation of the different modules has
to be combined and filtered in a higher
organisational structure. Those are
nodes that connect to all modules and
serves as integrational centre (dashed
red box). Since those nodes connect
to different parts of the network they
will not be part of a module but show
in intermediate position, resulting in a
high participation p. Such a modular
architecture with an integrating central
hub structure optimises short commu-
nication ways with specialisation of the
modules, and are therefore small-world
networks. But note that not all small-
world networks implicate a modular
or even hierarchical organisation. [17]

tion and highly interconnected hubs [21] [22] [23] [20].. Anatomical [21] Olaf Sporns. Network attributes
for segregation and integration in
the human brain. Current opinion in
neurobiology, 23(2):162–171, 2013

[22] G. Zamora-López, C. S. Zhou, and
J. Kurths. Cortical hubs form a module
for multisensory integration on top
of the hierarchy of cortical networks.
Front. Neuroinform., 4:1, 2010

[23] Olaf Sporns, Christopher J Honey,
and Rolf Kötter. Identification and
classification of hubs in brain net-
works. PloS one, 2(10):e1049, 2007

[20] Gorka Zamora-López, Changsong
Zhou, and Jürgen Kurths. Exploring
brain function from anatomical con-
nectivity. Frontiers in neuroscience, 5,
2011

and functional segregation refers to the existence of specialised
neurons, groups of neurons or brain area that have minimised in-
teraction with areas. Those areas have often very specialised tasks
and respond to only very distinct input features. Those inputs can
be of sensory nature or might already be pre-processed by other
preceding modules. The existence of such functionally specialised
modules induce also a structural modularity that can be detected
by community detection algorithms as indicated in Fig. 2. However,
those specialised modules do not operate isolated and therefore a
communication between them is necessary. This combination of
information takes place in a superordinate structure of hubs and is
known as integration. Those two features, integration and segrega-
tion, coexist in neuronal systems at a wide range of scales [24]. For [24] Hae-Jeong Park and Karl Friston.

Structural and functional brain net-
works: from connections to cognition.
Science, 342(6158):1238411, 2013

example, the primary visual cortex is highly specialised for pattern
recognition and consists of a six-layered structure. Those layers are
formed by ocular columns which integrate basic neuronal opera-
tions as orientation of visual inputs. This indicates that modular
and hierarchical architectures are emerging in combination.

Since segregation and integration are contrary features a com-
plex structure is necessary to achieve both. Both being directly
connected with the modular structure the community analysis is
a suited tool for deciphering both. By measuring the contribution
of individual nodes in this organisation we can show that a simple
modular organisation does not fulfil the need to integrate infor-
mation. Although this discussion is inspired by questions arising
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from neuroscience, the tools are applicable to networks of all types
of backgrounds. To illustrate this the mesoscale structure of cli-
mate networks and the human made flight traffic network are also
analysed.

Earlier attempts

Before presenting our formalism to characterise the roles of nodes
in modular networks, we first review two previous efforts.

Mapping of functional roles:

The framework proposed in [14] [15] consists of a mapping of the[14] Roger Guimera and Luís A. Nunes
Amaral. Cartography of complex
networks: modules and universal roles.
Journal of Statistical Mechanics: Theory
and Experiment, 2005(02):P02001, 2005

[15] Roger Guimera and Luis A Nunes
Amaral. Functional cartography of
complex metabolic networks. Nature,
433(7028):895–900, 2005

nodes based on two parameters; one parameter evaluates the in-
ternal importance of the node within its module and the other one
evaluates its external connectivity. The internal parameter, named
as within-module degree, is defined as the z-score of the internal de-
gree of the node:

zi =
k′i − 〈k′〉

σ′
(1)

where k′i is the number of links the node makes with members
of its own community, 〈k′〉 denotes the average internal degree
of the nodes in this community and σ′ their standard deviation.
The external parameter, the participation coefficient, quantifies how
distributed are the links of a node among all the communities:

Pi = 1−
M

∑
m=1

(
kim
ki

)2
(2)

Pi = 0 if all the links of a node fall in the same community and
Pi = 1 if its links are uniformly distributed among all the modules.
Following these two parameters, the nodes of a network can be
mapped into a z-P plane in which nodes of different roles occupy
distinguished regions, similar to those illustrated in Fig. 1. This
framework suffers from a few shortcomings that limit its applica-
tion and the interpretation of the results obtained: (i) Nodes are
classified as hubs or non-hubs based exclusively on the information
of their internal degrees when in the literature the term hub is asso-
ciated with the degree a node, which comprises the whole network.
(ii) All communities are assumed to be characterised by identical
statistical properties. For example, if two modules had different in-
ternal degree distributions the zi of nodes in them is evaluated over
different statistical baselines. On the other hand, the formulation
of the participation index assumes that all communities are of the
same size. (iii) The largest value of Pi depends on the number of
communities. In a partition with M communities the largest partic-
ipation a node can take is Pi = 1− 1

M < 1 when according to [14],[14] Roger Guimera and Luís A. Nunes
Amaral. Cartography of complex
networks: modules and universal roles.
Journal of Statistical Mechanics: Theory
and Experiment, 2005(02):P02001, 2005

it should be Pi = 1. As a consequence Pi values across networks
are only comparable if both networks contain the same number of
communities.



introduction 15

Algebraic approach to characterise the modular skeleton:

The approach introduced in [16] is based on the linear decomposi- [16] Alex Arenas, Javier Borge-
Holthoefer, Sergio Gomez, and Gorka
Zamora-Lopez. Optimal map of
the modular structure of complex
networks. New Journal of Physics,
12(5):053009, 2010

tion of the modular organisation of a network. It accounts for the
multidimensional nature of the problem to classify nodes. Given a
partition L of the network into M communities, the contribution ma-
trix C is defined as the number of links each node devotes to every
community, Cis = kis. The contribution matrix contains all the infor-
mation of the modular structure and the challenge is to extract this
information in a structured manner. This is achieved by application
of singular value decomposition (SVD) to the C matrix and investi-
gating its principal directions. In this representation every module
has its own intrinsic direction ẽs in the M-dimensional space cor-
responding to the direction of those nodes that are only internally
connected and make no external connections with other modules.
The deviation of a node’s projection ñi from ẽs represents its ten-
dency to connect with other modules. Equivalently, the deviation
of the sum of a module’s nodes projections m̃s represents the ten-
dency of the module Cs to connect to other modules; m̃s = ẽs only
when the module is disconnected from the others. On the other
hand, the scalar product of the modular projections m̃s reflects the
relationships between modules allowing to investigate how mod-
ules are interrelated. Despite its elegance and its success to map the
skeleton formed by the communities, the information for individual
nodes is more difficult to extract and differentiate. As it usually
happens with linear decomposition methods the interpretation of
the optimal dimensions and their projections in terms of the nat-
ural parameters of the system is not trivial due to the mixture of
information.

Altogether, we find that the functional mapping formalism lacks
of universal criteria and the parameters given by the algebraic ap-
proach are difficult to interpret node-wise. In the following we
introduce a formalism based on four parameters, local and global,
whose combination leads to a rich understanding of the roles that
nodes play within modular networks. Our approach aims to be
universal such that all networks are comparable within the same
criteria. Additionally, it recognises the fact that the probability of a
node to connect to a community depends on the relative sizes of the
communities.
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Figure 3: Panel (a): A graph consisting
of n = 5 nodes (black dots) that are
connected with m′ = 6 edges (red
lines). Panel (b)shows the simple
graph where self-loop (dashed line)
is erased and the multiedges (dotted
lines) collapsed into a single one and
the number of edges becomes m = 4.
The neighbourhood of node 1 is given
by N(1) = {3, 5}.

In this work we use a framework from the discrete mathematics
that is called graph or network. This field was introduced by Leonard
Euler in 1753 in his infamous work on the Seven Bridges of Königs-
berg [25] and reached further attention at the end of the 20th cen-

[25] Leonhard Euler. Solutio problema-
tis ad geometriam situs pertinentis.
Commentarii academiae scientiarum
Petropolitanae, 8:128–140, 1741

tury from a wide range of disciplines. This includes the Physical
Sciences, Sociology, Biology, Climatology and many others. Due
to this broad applicability also a wide range of network measures
and metrics were introduced and successfully utilised in the last
years. Here we will introduce only the neccesarry ones and we refer
to [2] for a comprehensive and to [26] for a mathematicaly stricter

[2] Mark Newman. Networks: An
Introduction. Oxford University Press,
2010

[26] Geir Agnarsson and Raymond
Greenlaw. Graph Theory: Modeling,
Applications, and Algorithms. Prentice-
Hall, Inc., 2006

introduction.
In the simplest sense a graph is an ordered pair G = (V, E) com-

posed of a set V of vertices (nodes) that are connected via edges
(links) from the set E. The size of the network is determined by the
number of nodes n = |V| and the number of edges m = |E|. Nodes
that are connected to each other via an edge are called neighbours,
the union of all neighbours of a node u is its neighbourhood N(u).
A graph without nodes connected with themselves (self loops) and
multiple connections between a pair of nodes (mulitedges) is called
a simple graph to which we will restrict our discussion if not oth-
erwise stated.The most common representation of a graph is the
adjacency matrix which is an n× n matrix with the elements

Aij =

1 if nodes i and j connected

0 else
. (3)

The adjacency matrix for the simple
graph shown in (3b) is given by the
5× 5 binary matrix

A =


0 0 1 0 1
0 0 1 0 0
1 1 0 0 1
0 0 0 0 0
1 0 1 0 0

 .

The edge list for the same network is

E = {(1, 3), (1, 5), (2, 3), (3, 5)}.

Accordingly this is a binary matrix. In more general frameworks
the network’s edges might be given an individual weight wi ∈
R. Furthermore since an edge connects two vertices the matrix is
symmetric Aij = Aji. In directed network edges have a starting and
end vertex, which gives rise to a non-symmetric adjacency matrix.

The maximal number of edges in a simple graph is (n
2) =

1
2 n(n−

1) and a network with this number of edges is called the complete
graph on n Kn. We then define the density ρ of a graph to be the
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fraction of edges that are present of all possible

ρ =
2m

n(n− 1)
. (4)

Graphs with a low density are called sparse and and graphs with
a high density are referred to as dense 1. Another graph represen-1 Strictly spoken sparsity is only

distinguishable from dense graph in
the limit n → ∞ and is given if ρ → 0,
in the case of a finite limit the network
is considered dense.

tation that is especially useful for such sparse graphs is an edge
list and is widely used to increase computational performance, in
particular in terms of memory use.

Many properties of graphs must be formulated in terms of nu-
merical values. The first such attribute we define is the degree k of a
node and is the number of edge ends that connect to an edge. It can
easily be calculated from the adjacency matrix

ki =
n

∑
j=1

Aij. (5)

node 1 2 3 4 5 ∑ 〈k〉
degree k 2 1 3 0 2 8 8/5

Table 1: Node’s degree for network
shown in (3b). The sum over all node’s
degrees is equal to twice the number
of edges of the graph according to the
Hand-Shaking-Theorem and the mean
degree 〈k〉 = 1.6 since the network
consists of five nodes.

When summing up the degrees of all nodes we receive twice the
number of edges since each edge is connected to exactly two nodes

∑
i∈V

ki = 2m, (6)

what is known as the Hand-Shaking-Theorem. The mean degree is
then

〈k〉 = ∑i∈V ki
n

=
2m
n

. (7)

1

2

3

4

5

Figure 4: Two paths in the graph (3b),
both from node 2 to node 5: The red
(dotted) arrows indicate the path
(2 → 3 → 1 → 5) of length three. The
blue (dashed) arrows indicate the path
(2→ 3→ 5) of length 2 that is also the
shortest path between nodes 2 and 3,
their geodesic distance is therefore 2.
Note that all nodes except node 4 can
be connected via paths to each other,
therefore the graph consists of two
connected components {1,2,3,5} (black
nodes) and {4} (grey node).

The number of distinct paths of length
l = 2 of the network shown in (4) is
given by

A2 =


2 1 1 0 1
1 1 0 0 1
1 0 3 0 1
0 0 0 0 0
1 1 1 0 2


and paths with l = 3 by

A3 =


2 1 4 0 3
1 0 3 0 1
4 3 2 0 4
0 0 0 0 0
3 1 4 0 2


and the paths between nodes 2 and 5

are highlighted.

A path in a network is a route from one node in a network to
another along the edges. More strictly speaking it is any sequence
of vertices such that consecutive pairs of vertices are neighbours. In
(4) two of such paths are shown. Both start at vertex 2 and end at
vertex 5. They differ in the amount of edges crossed, what defines
its length l. Therefore the blue one has a l = 2 and the longer one of
l = 3.

The calculation of the number of paths between a pair of nodes
in a network is received by iterative multiplication of the previously
introduced adjacency matrix. The entry A(k)

ij in Ak is the number
of distinct walks from node i to node j of length k. Note that this
holds for k = 1 since the adjacency matrix has non-zero entries for
those nodes that are neighbours. The distance matrix D is the n× n
matrix where each entry dij gives the geodesic distance between
node i to j. In an undirected graph dij = dji and the distance matrix
therefore symmetric D = D>.

A graph is connected if every pair of distinct vertices can be con-
nected via a path. If this is not the case the graph can be divided
into disjoint subgraphs that are connected themselves, we call those
subgraphs components. Components that consist of only a single
node are termed isolated nodes.

The geodesic distance d between a pair of nodes (i, j) defined as
the length of the shortest path between those nodes. Applying the
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iterative multiplication of the adjacency matrix we know that is
given by the smallest value of r such that Ar

ij > 0. All nodes be-
longing to the same component have a finite distance to each other,
to nodes in other components the distance is ∞. The length of the
longest geodesic path between any pair of nodes is the diameter of
a graph. In the case of a multi-component graph often the compo-
nents are analysed separately and the infinite distances ignored.
This is also the case for calculating the average path length L that is
defined as the mean distance between all pairs of nodes in a net-
work

L =
1

n(n− 1) ∑
i 6=j

dij. (8)

The pairwise distance between all
nodes in the network shown in (4) is
given by the distance matrix

D =


0 2 1 ∞ 1
2 0 1 ∞ 2
1 1 0 ∞ 1
∞ ∞ ∞ 0 ∞
1 2 1 ∞ 0


thus the graph consists of two com-
ponents, one of diameter 2 and size 4
and the other being an isolated node.
The average path length of the larger
component (mean of bold values) is
16
4·3 = 4

3 and the efficiency of the whole
graph E = 1

2 .

Closely connected is the measure of a networks global efficiency
E [27], computed as the average of the inverse of the distance ma-

[27] Vito Latora and Massimo Mar-
chiori. Efficient behavior of small-
world networks. Physical review letters,
87(19):198701, 2001

trix

E =
1

n(n− 1) ∑
i 6=j

1
dij

(9)

The extreme cases are given by a graph of isolated nodes that has
an efficiency of E = 0 since all nodes have infinite distances towards
each other, a fully connected graph on the other hand leads to an
efficiency of 1.

A node’s local clustering coefficient Ci is a measurement of how
densely its neighbours are connected with each other [28]. Suppose

[28] Duncan J. Watts and Steven H.
Strogatz. Collective dynamics of
‘small-world’networks. Nature,
393(6684):440–442, 1998

node i has ki neighbours then there are at most ki(ki−1)
2 undirected

edges between each other. The clustering coefficient is then defined
as the fraction of existing links between neighbours to this maximal
possible number

Ci =
2 · # of edges between i′s neighbours

ki(ki − 1)
. (10)

The global clustering coefficient C is then a property of the whole
network and defined as the average over all node’s individual local
clustering

C = 〈Ci〉 =
1
n

n

∑
i=1

Ci. (11)

It is known that the global clustering is dominated by nodes with
small degree’s. To overcome this the global transitivity can be used
instead. It is the ratio of connected triads to the number of potential
ones in the whole graph.

Community detection – Network of networks

The above metrics can often be characterised in terms of the scale
they investigate the graph Fig. 5: local measures as the degree k or
clustering c take into account only the direct neighbourhood of
each vertex. On the other side global measures as the betweenness g
need information on the whole network (all shortest path lengths)
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Local Mesoscale Global

Local 
contribution 
to mesoscale

degree k
clustering c 

community
structure

diameter
betweenness

participation p
dispersion d

Figure 5: Metrics to analyse networks
can access a wide range of scales:
Ranging from local measures as
the degree k of a node up to global
metrics like the betweenness that
need full information of the network.
In the recent years the mesoscale or
community structure has been analysed
and shown to be of importance. Here
we will introduce measures that
bridge from the local measures to
the mesoscale, e.g. how are a node’s
neighbours are distributed in the
community structure.

in order to validate each node’s centrality. In the recent years the
investigation of the networks organisation in between those ex-
treme scales of observation has become an important tool. Such
mesoscale analysis detects the modular or community structure of
graphs. Such a community is a group of nodes that are relatively
densely connected with each other but sparsely with other of such
dense groups in the network [6] [7] [29].[6] Michelle Girvan and Mark E. J.

Newman. Community structure
in social and biological networks.
Proceedings of the National Academy of
Sciences, 99(12):7821–7826, 2002

[7] Santo Fortunato. Community
detection in graphs. Physics Reports,
486(3):75–174, 2010

[29] Mason A. Porter, Jukka-Pekka
Onnela, and Peter J. Mucha. Commu-
nities in networks. Notices of the AMS,
56(9):1082–1097, 2009

Such grouping of single agents in groups originates from the So-
cial Sciences and Fig. 6 shows a famous benchmark model [30]. In

[30] Wayne W Zachary. An infor-
mation flow model for conflict and
fission in small groups. Journal of
anthropological research, pages 452–473,
1977

the recent years the detection of such a modular structure has been
adopted by many different disciplines, form biological systems, e.g.,
protein interaction structure or collaboration [31] networks between

[31] Anna Lewis, Nick Jones, Mason
Porter, and Charlotte Deane. The
function of communities in protein
interaction networks at multiple scales.
BMC systems biology, 4(1):100, 2010

scientists [32].

[32] Martin Rosvall and Carl T
Bergstrom. Maps of random walks on
complex networks reveal community
structure. Proceedings of the National
Academy of Sciences, 105(4):1118–1123,
2008

There are many different methods for detecting such a modular
structure. Furthermore the measurement of the significance of
different detected groupings is still an open discussion among
experts. Here we will use the Louvain-method [33] [34] to extract

[33] Vincent D Blondel, Jean-Loup
Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal
of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008

[34] Inderjit S. Jutla, Lucas G. S. Jeub,
and Peter J. Mucha. A generalized
louvain method for community
detection implemented in matlab.
http://netwiki.amath.unc.edu/GenLouvain,
2011-2012

the partitioning. As most community detection methods it tries to
find a partition that optimises the modularity quality function

Q =
1

4M ∑
ij

(
Aij −

kik j

2M

)
δc(i),c(j). (12)

The modularity Q ∈ [−1/2, 1) evaluates the goodness of a partition
comparing the actual fraction of links falling within the modules to
the expected fraction if links were distributed at random conserving
the degrees of the nodes [35]. Positive values indicate stronger

[35] Mark EJ Newman. Modularity
and community structure in networks.
Proceedings of the National Academy of
Sciences, 103(23):8577–8582, 2006

communities than expected by chance, with Q → 1 for perfectly
partitioned graph topologies.

Community detection algorithms are often nondeterministic. In
order to compare modules from different runs the Jaccard index can
be used. It is a statistic for comparing the similarity and diversity of
two sets A and B

J(A, B) =
|A ∩ B|
|A ∪ B| . (13)

In our case A and B are modules from different partitions of the
same network.
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Figure 6: The Zachary karate club
network network shows n = 34
member of an University sports club.
They are connected by one of the
m = 78 edges if they are friends. The
node’s community affiliation is shown
with pink circles and blue squares.
After a disagreement the club split up
into two competing clubs (indicated by
dotted line) that are exactly predicted
by the Louvain algorithm. Note that
only 10 edges are connecting members
of different groups (red dashed lines)
and a majority of the friendships
are inside the modules, leading to a
relatively high modularity of Q ≈ 0.62.
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Participation – Bridging from community detection to local measures

Following we want to use the mesoscale structure in combina-
tion with local measures in order to get an in-depth picture of the
networks modular organisation. As illustrated in Fig. 5 we are
therefore interested in each node’s local neighbourhood but do not
simply count its magnitude as for the degree but take into account
each neighbour’s community association. We therefore will be able
to measure the distribution of a node’s links amongst all modules.
In order to do so we introduce the concept of participation vector Pi

whose elements Pim represent the probability that node i belongs
to community Cm, where m = 1, 2, . . . , M. This probability is given
by Pim = kim

Nm
where Nm is the size of the community. Since we

are only interested in the relative differences participation vectors
are normalised such that ∑M

m=1 Pim = 1. Otherwise the norm of Pi

would be proportional to the degree ki but this information shall be
disentangled and captured only by the hubness index. The vector of
a node devoting all its links to the second community of a network
with M = 4 communities is Pi = (0, 1, 0, 0) and for a node whose
links are all equally likely distributed among the four communities,
Pi = (1/4, 1/4, 1/4, 1/4).

Once the participation vectors have been computed for all nodes,
we want to reduce that information into scalar values to quantify
how distributed are the links of a node among all the communities.
For consistency with previous definitions pi = 0 if the node devotes
all its links to a single community and pi = 1 if its links are equally
likely distributed among all the modules. Therefore we evaluate the
standard deviation σ(Pi) of the elements of the participation vector
Pi and define the participation index as:

pi = 1− σ(Pi)

σmax(M)
= 1− M√

M− 1
σ(Pi). (14)

The normalisation factor accounts for the fact that the standard
deviation of an M dimensional vector with all elements equal to
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zero but one is σmax(M) =
√

M− 1 / M.

Dispersion – The node-centric participation

I II

III IV

Figure 7: Schematic view of the node
centric participation or dispersion
d. The node itself is embedded in
the module I and has furthermore
connections to the modules III and IV
but not to II. Thus for the node centric
participation index the potential
connection to sub-network II can be
neglected. Furthermore for the intra-
module degree of a node only the
number of neighbours in the same
module as the node is considered.

The investigation of a nodes connectivity to all modules in a net-
work is a somewhat global perspective. It also can be interesting
to analyse the distribution of neighbours from a node-centric per-
spective and take into account only modules it is connected with as
indicated in Fig. 7.

The larger its pi the more difficult it is to classify the node into
one and only one community. But for a node to be difficult to clas-
sify it is not necessary that it connects to all the communities. If a
node is equally likely connected with only two of the communities,
it is also difficult to classify. Such a node has for example a partic-
ipation vector Pi = (0, 1/2, 0, 1/2). To account for this information
we define the dispersion of a node di equivalent to the participation
index but considering only the non-zero entries of the participation
vector:

di = 1− σ(P′i)
σmax(M′)

= 1− M′√
M′ − 1

σ(P′i), (15)

where P′
i is the subvector containing only the non-zero entries of

Pi, and M′ its dimension. A node only connected within one com-
munity has di = 0 and a node equally likely connected among
M′ ≤ M has di = 1. We note that in general di ≥ pi with the
equality only happening when M′ = M. The dispersion index shall
be regarded as a measure of how difficult it is to classify a node
into only one community and the participation index as the global
reach of a node’s links among all the communities. Furthermore
we want to take into account that nodes are more likely to connect
with larger modules. Imagine a network with only two commu-
nities, one of size N1 = 20 and another of size N2 = 40. A node
devoting ten links to each of them is contributing more to the small
community than to the large one and therefore, it is more likely to
belong to the small community. We note also that not all combina-
tions of dispersion and participation are possible. In fact for a node
with dispersion d and number of connected communities Mc the
participation is derived by the closed form

p(d, M, Mc) = 1−
√

M
M− 1

(
1

Mc
((Mc − 1)(1− d)2 + 1)− 1

M

)
. (16)

The derivation uses the normalisation of the participation vector
P and is shown in the appendix. The highest difference between a
node’s d and p is reached when Mc = 2 and follows:

p+(d, M) = p(d, M, 2) = 1−
√

M
M− 1

(
1
2
((1− d)2 + 1)− 1

M

)
. (17)

Hubness

Figure 8: Three example networks
of eight nodes with the central node
having degree seven. In the uppest one
(full graph) all nodes have this degree,
in the lowest one (star graph) all other
nodes have degree one. In reality most
networks will lie in between (middle
panel). Color indicates degree (from
1 = dark blue to 7 = red). This shows
that the degree of a node alone is not
sufficient for the determination of its
importance but as to be compared
with those of the others (as with the
standard score) or a null model (as the
hubness).

One of the most important features found in real networks is the
presence of highly connected nodes or hubs. Despite their impor-
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tance a formal definition of hubness is missing; they are colloqui-
ally defined as “those nodes with many more connections than others”.
The hallmark of networks containing hubs, scale-free networks,
possess a power-law degree distribution meaning that most nodes
make only few links and a few nodes have many connections. The
degrees of hubs is usually orders of magnitude larger than that of
the sparsely connected nodes. The within-module degree in Equa-
tion (1) is intended to capture this notion of hubness by estimating
the significance of a node’s degree compared to that of its neigh-
bours.

Now, we note a paradoxical behaviour in the hubs of scale-free
networks: despite having much larger degree than other nodes,
hubs are only connected to a small fraction of the network. This
happens because typically studied scale-free networks, both syn-
thetic and real, are sparse. For example, in a scale-free network
with N = 100 000 nodes and exponent γ = 3 the most con-
nected hubs are linked with only 2%− 5% of all nodes. In contrast,
many real networks are dense and therefore the loose definition
of hubness above does not comply. The same applies to the inter-
nal connectivity of the modules which are, by definition, densely
connected parts of a network. In dense (sub-)networks the mean
degree is of the same order of magnitude as its size, 〈k〉 ∼ N, and
therefore the range of differences between the least and the most
connected nodes is considerably reduced. Also, contrary to the
hubs of scale-free networks, the hubs of dense networks are con-
nected to a large fraction of the nodes. In dense networks it is usual
to find hubs connected from 30 % up to 70 % of the network.

We find that for a measure of hubness to be universal it requires
the assessment of the degrees under a common statistical baseline.
Therefore, we define the hubness index hi of a node as the compar-
ison of its degree ki with the degree distribution of an equivalent
random graph of the same size N and density ρ. Since random
graphs possess a narrow degree distribution around their mean
degree 〈k〉R, the more a node’s degree deviates from the degree dis-
tribution of an equivalent random graph, the more reasonable it is
to be considered as a hub. It is well known that the mean degree of
a random graph is 〈k〉R = (N − 1)ρ and the standard deviation of
its degree distribution is σR =

√
(N − 1)ρ (1− ρ) [2]. Constraining [2] Mark Newman. Networks: An

Introduction. Oxford University Press,
2010

to networks without self-loops, we define the hubness index of a
node in a network of size N and density ρ as:

hi =
ki − 〈k〉R

σR
=

ki − (N − 1)ρ√
(N − 1) ρ (1− ρ)

. (18)

The hubness is negative for nodes with ki < 〈k〉R allowing to iden-
tify also outliers that are significantly less connected than expected
from randomness. This index differs from the one defined in Equa-
tion (1) in that all networks are compared to the same null-model –
the random graph – instead of using the internal statistics of each
network and of each community as a baseline for itself. This makes
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Figure 9: Dependence of the bound-
aries of hubness index on the size N
and density ρ of the network. (a) Illus-
trative case for networks of N = 30
and ρ = 0.25. Due to the position
of the degree distribution of ran-
dom graphs with N and ρ, nodes can
achieve different extremal values of
significance. A node with the smallest
degree ki = 1 will take much smaller
hubness than a node with the largest
degree ki = 29. (b) Upper and lower
boundaries of hubness for networks
of different size with increasing den-
sity. Inset, shows the zoom near the
thresholds hi ± 2.5.
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the index universal and the results for different networks and mod-
ules comparable. Once the hubness index is defined we need to
establish guidelines for interpreting the results and to identify its
extremal values. In a random graph the degree of 99% of the nodes
lies in the range bounded by 〈k〉R ± 2.5 σR. In any network, nodes
within this range shall not be considered outliers. The larger the
hi index grows above 2.5 σ the more likely is the node a hub. The
largest and smallest values that hi can take depend on the size and
the density of the network. In sparse networks it is not possible to
find outliers on the negative side because 0 < 〈k〉 � N and even
disconnected nodes lie in the range of statistically expected degrees.
However, there is plenty of room for some nodes to have degree
much larger than the mean and achieve high significance. Fig. 9(a)
illustrates this for a network with N = 30 and ρ = 0.25. A node
with degree ki = 1 gives hi = −3.1 while a hub with ki = 29
achieves hi = 8.3. As the density increases the situation is reversed
because 〈k〉 → N. The room for hubs decreases limited by the size
of the network while from the bottom, occasional nodes with few
connections become very significant. The hubness of a node with
degree ki = 0 is:

h−(N, ρ) = − 〈k〉R
σR

= −
√

(N − 1) ρ

1− ρ
(19)

and for a node with degree ki = N − 1,:

h+(N, ρ) =

√
(N − 1) (1− ρ)

ρ
(20)

Equations (19) and (20) represent the lower and upper boundaries
for the hubness index. In Figure 9(b) the boundaries are shown
for networks of different size and varying density. When networks
are sparse the lower limit h− > −2.5 σ regardless the size N and
the upper bound tends to infinity. When networks are very dense,
the opposite happens, the lower bound goes to −∞ while there is
no room for significant hubs because h+ < 2.5 σ. As highlighted
in the inset, the limitations are stronger for smaller networks. For
example, in networks of N = 10 there is no regime of density in
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which nodes with significant low and high degree can be found
simultaneously.

From now on we will characterise nodes by two hubness values:
the global hubness h(g) is the hubness of the node in the network and
the local hubness h(l) its hubness within the community it belongs
to. In this case N and ρ are replaced by the size and density of the
community N′ and ρ′.

Role detection

We introduced four different indexes describing role of nodes: Par-
ticipation p as a measure of the accessibility of all modules by a
node. Dispersion d quantifies a nodes’ affiliation with the modules
it connects to. Local hubness validates the nodes importance in-
side its own module and global hubness in comparison with nodes
of the whole network. Illustrating this four-dimensional space is
not straightforward. Therefore we mostly discuss scatter or den-
sity plots that show the dependence and distribution of two out of
those four indexes. For example, as illustrated in Fig. 1 the (p, h(g))

allows us to investigate the role of nodes in terms of global impor-
tance, called hubs or non-hubs, in combination of their mesoscale
position, revered to as ultra-peripheral, peripheral, connector, or
kinless. The distinction between the different participation clas-
sifications is not always straightforward. Usually we divide the
participation into three regimes of equal length (0, 1/3] (periph-
eral), (1/3, 2/3] (connector) and (2/3, 3] (kinless), as well as the
extreme case 0 (ultra-peripheral).
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Multilayer networks

Figure 10: Multilayer networks consist
of multiple layers of different types of
edges that connect the nodes. Despite
occurring frequently in real world
data the multilayer networks are often
merged to a monolayer adjacency
matrix A? for simplicity. Further-
more the multiple edges (red lines)
are then removed to end up with a
simple graph’s adjacency matrix A.
Such reduced representations do not
distinct between the different types of
connectivity that the edges represent
but can nevertheless give important
insight in the network’s structure.
Note that the ordering of the layers
is mostly arbitrary in multilayer net-
works, however in temporal networks
that can be represented in a multilayer
fashion the ordering is of fundamental
importance.

layer 1 layer 2 layer 3 layer 4

simple
monolayer
network

multilayer network monolayer
network

Until now we exclusively explored networks in which all edges
are given an equivalent footing. Some real-world networks con-
sist of interconnected layers of different types of edges, and those
are called Multilayer networks [36] [37]. We can think of those dif-[36] Manlio De Domenico, Albert

Solé-Ribalta, Emanuele Cozzo, Mikko
Kivelä, Yamir Moreno, Mason A
Porter, Sergio Gómez, and Alex Are-
nas. Mathematical formulation of
multilayer networks. Physical Review X,
3(4):041022, 2013

[37] Mikko Kivelä, Alexandre Arenas,
Marc Barthelemy, James P Gleeson,
Yamir Moreno, and Mason A Porter.
Multilayer networks. arXiv preprint
arXiv:1309.7233, 2013

ferent links as different ways of transportation (e. g. buses, metro,
and trains) between stations or different kind of social interac-
tions (e. g. social media friendship, real-world friendship, and co-
workership) between individuals. The interplay of such diverse
structures is a current topic in the mathematical [36], as well as in

[36] Manlio De Domenico, Albert
Solé-Ribalta, Emanuele Cozzo, Mikko
Kivelä, Yamir Moreno, Mason A
Porter, Sergio Gómez, and Alex Are-
nas. Mathematical formulation of
multilayer networks. Physical Review X,
3(4):041022, 2013

the social sciences [38].

[38] Arkadiusz Stopczynski, Vedran
Sekara, Piotr Sapiezynski, Andrea
Cuttone, Mette My Madsen, Jakob Eg
Larsen, and Sune Lehmann. Measur-
ing large-scale social networks with
high resolution. PloS one, 9(4):e95978,
2014

Until recently the different layers of a network were condensed
into a single mono-layer in order to simplify the data analysis, as il-
lustrated in Fig. 10. The monolayer can be further reduced to a sim-
ple graph by merging the multiple edges. Neuronal networks for
example consist of two types of synapses between the neurons [39]:

[39] Dominik Traxl. C. elegans - Neural
structure & dynamics. Master’s thesis,
Ludwig-Maximilians-Universität
München, 2012

Chemical synapses as well as gap junctions. Both are junctions
that enable neurons to exchange information so the reduction to a
monolayer seems reasonable. Nevertheless they are fundamentally
structurally and functionally different as chemical synapses can
either be excitatory or inhibitory, whereas gap junctions are always
excitatory since there is a direct pulse transfer from one neuron to
the other.

To be more specific we represent a multilayer network by a se-
quence of graphs {Gα}b

α=1, with each layer Gα = (V, Eα) being
indexed by α ∈ {1, ..., b} and b being the number of layers [40].

[40] Emanuele Cozzo, Mikko Kivelä,
Manlio De Domenico, Albert Solé,
Alex Arenas, Sergio Gómez, Mason A
Porter, and Yamir Moreno. Clustering
coefficients in multiplex networks.
arXiv preprint arXiv:1307.6780, 2013

Note that in our framework each layer has the same set of nodes
V, however in more general situations as multiplex networks this
can be replaced by an individual set Vα. Note that this formalism
is similar to an edge colouring of a monolayer graph G = (V, E)
that allows multiple edges. The straightforward representation of
such a multilayer graph is an adjacency tensor A(α)

ij with n× n× b
elements [36].[36] Manlio De Domenico, Albert

Solé-Ribalta, Emanuele Cozzo, Mikko
Kivelä, Yamir Moreno, Mason A
Porter, Sergio Gómez, and Alex Are-
nas. Mathematical formulation of
multilayer networks. Physical Review X,
3(4):041022, 2013

We now can use the a priori information of each edges layer affil-
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iation in order to define a multilayer participation p(ml) that mea-
sures how a node’s neighbours are distributed amongst different
layers. Receiving non-normalised participation vector elements k(ml)

for each node i and layer α is straightforward as we simply count
the number of edges of each layer attach to a node, similar to the
degree

k(ml)
i,α =

n

∑
j=1

A(α)
ij . (21)

However, by definition all layers have the same number of nodes
n and therefore do not allow normalisation in the same manner as
introduced for the community sizes. To overcome this we quantify
the size of each layer as the number of nodes that do have at least

one neighbour in this layer Nα =
∣∣∣{V : k(ml)

i,α > 0}
∣∣∣ and define the

elements of the multilayer participation vector as

P(ml)
i,α = k(ml)

i,α /Nα. (22)

We now can treat the multilayer participation vector in same way
as the monolayer version in order to get a multilayer participation
p(ml) and dispersion d(ml). As indicated in Fig. 11 minimal value
of multilayer participation and dispersion p(ml) = d(ml) = 0 show
that a node is exclusively connected in a single layer. High values
on the other hand indicated that a node’s neighbours are equally
distributed amongst all layers.

1

2

3
Figure 11: Example multilayer graph
consisting of three layers (1,2, and
3) with sizes Nα of N1 = 6, N2 =
2, and N3 = 2. The red node has
only neighbours in the first layer
and therefore minimal multilayer
participation and dispersion p(ml) =
d(ml) = 0. The blue node in contrast
has neighbours in all layers, leading
to a multilayer participation vector of
P(ml) = (1/6, 1/2, 1/2) and therefore
participation and dispersion of p(ml) =
d(ml) = 2/3. The maximal value of
1 is not reached despite having one
neighbour in each layer since the
layer sizes differ. The yellow node
has neighbours in only two layers and
therefore d(ml) > p(ml).

Last but not least we want to introduce the multilayer degree k(ml)

as the number of neighbours a node does have amongst all layers

k(ml)
i =

b

∑
α=1

k(ml)
i,α . (23)

Note that this only equivalent to the degree of a node in the col-
lapsed monolayer network if multiple edges were not merged into
unweighted ones.
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Figure 12: Schematic illustration of
the constructing of the example graph:
It consists of three modules (I,II, and
II). I and II each consists of ten and III
of twenty nodes. Those are internally
randomly connected with probabilities
p = 0.3 for II and III and with p = 0.45
for I. Each of those random graphs
connects with one of the nodes 11,22,
and 43 via five edges. Furthermore
44, 45, 46, and 47 are introduced as
different types of connector nodes
between the modules. Although those
nodes are not clearly belonging to one
of the modules by contraction they
will be partitioned into one with the
Louvain algorithm, as illustrated in
Fig. 13(a).

The omnipresence of networks that arise from data and real world
applications raises the question whether they have underlying
features in common and how those can be mimicked in artificial
network models. Furthermore these allow us to tune and vary a
certain network parameter, e.g. the density and see in what way
other measures are effected. In this chapter we apply the intro-
duced metrics global and local hubness, as well as participation and
dispersion to a wide range of synthetic networks.

Firstly we introduce a handcrafted example graph that allows
us to show the different roles nodes can play in the mesoscale.
Then we investigate the lattice and ring-lattice networks that are
mimicking spatial organisation of networks. This is followed by a
discussion of Random and Scale-free graphs. We then conclude that
networks with intrinsic modular structure show fundamentally dif-
ferent participation than the latter. Last but not least we introduce
a new network model that shows an interplay between modular
organisation and a scale-free hub structure in order to mimic bio-
logical information processing systems as the human brain.

Example graph

community size edges density

I 12 34 0.52

II 12 14 0.20

III 23 73 0.29

Table 2: Sizes, number of edges and
densities of communities I, II, and
III of the example graph shown in
Figure 13(a).

In order to demonstrate the usefulness of the introduced 4-dimensional
mapping method we analyse a handcrafted example graph. The
graph in Figure 13(a) consists of n = 47 nodes that are grouped into
three modules. Each node’s affiliations is represented by a red circle
(community I), blue diamond (community II), or purple triangle
(community III). The partitioning was delivered using the Louvain
method for community detection [33] [34]. This method aims to [33] Vincent D Blondel, Jean-Loup

Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal
of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008

[34] Inderjit S. Jutla, Lucas G. S. Jeub,
and Peter J. Mucha. A generalized
louvain method for community
detection implemented in matlab.
http://netwiki.amath.unc.edu/GenLouvain,
2011-2012

maximise the modularity function Q, which evaluates the fraction
of links falling into the communities compared to the expected frac-
tion of links that would fall in the communities in a random graph
with the same degree distribution. Community III is the largest one
with 23 nodes and I and II are equally sized with 12 nodes each.
Communities I has a density of 0.52, community II has 0.2 and III
0.29 as summarised in Table 2. Thus each community is distinct
from the other two. We hand-picked seven nodes to illustrate the
different roles that can be identified in the 4-dimensional space
(h(g), h(l), p, d). Instead of showing all the six possible relations
we restrict to the three plots we find most informative: (h(l), h(g)),
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(pi, h(g)) and (pi, di) corresponding to Figures 13(b), (c) and (d). The
participation vectors representing the probability of each node to
belong to the communities I, II and III for the selected nodes are:

node I II III

11 1 0 0

22 0 1 0

43 0 0 1

44 0.52 0.48 0

45 0.32 0.32 0.35

46 0.38 0.41 0.2
47 0.48 0 0.52
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Figure 13: The exemplary graph
consisting of three modules (red
circles, blue diamonds, and purple
triangles) of sizes 12, 12 , and 23

for demonstrating different roles
nodes can have in the mesoscale
structure of a network. Panel (a) shows
a force-layout of the graph, Panel
(b) local hubness h(l) against global
hubness h(g), Panel (c) participation
p against dispersion d, and Panel (d)
participation p against global hubness
h(g).

– Nodes (11) and (22) are connected only within their modules
and their participation and dispersion are therefore p = d = 0,
we call them peripheral nodes. Both are connected to five nodes in
their communities and have a small global hubness h(g) < 0. They
are representative of peripheral non-hubs, see Figure 1, which can
functionally be identified with specialised or segregated function
in the network. The examination of their local hubness shows a
fundamental difference: (11) shows also h(l) < 0 and does not fulfil
a prominent position in its module since community I is dense but
(22) is the node with highest internal degree in II, which is a sparse
module and is therefore a local hub.
– Node (43) is also only connected with neighbours in its own mod-
ule and its participation and dispersion are p = d = 0. Since it
belongs to the largest community it is also one of the nodes with
highest global hubness h(g). It is both a local and a global hub with
no participation. It is characteristic of the rare peripheral hub cate-
gory, see Figure 1.
– Node (44) is a member of community II but devotes the same
number of links, six, to community I. It is therefore hard to deter-
mine to which of the two communities it belongs. This results in a
dispersion index d ≈ 1. However, it makes no links with commu-
nity III and has a reduced participation index of p = 0.5. This node
cannot be considered as a kinless hub but it is a typical connector
hub. The reduced participation however restricts the node’s ability
to integrate information from all parts of the network.
– Node (45) instead has the same number of neighbours but those
are spread out amongst all three modules. It is a kinles hub with the
ability to integrate on a global scale. Since it belongs to community
III, which is densely connected, its local hubness is h(l) < 0.
– Node (46) has only three neighbours but they are each in one of
the three communities. Therefore (46) is neither locally nor glob-
ally a hub but its high participation makes it a kinless node that is
located between all communities.
- Node (47) has two neighbours in its own community III and one
in the community II which is half the size. Therefore it has al-
most equal likelihood to belong to any of the two communities
and achieves a large dispersion value close to one. Its lack of con-
nectivity to the community III reduces its participation index to
p ≈ 0.5, therefore we can classify this node as a non-hub connector.
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In Figure 13(e) the results for this graph are shown using the
framework of the functional roles. Most of the nodes, including
(11), (22) and (43) are classified as ultra-peripheral (R1) but none as
hubs. Since only the internal degree is considered for the classifica-
tion of nodes into hubs and non-hubs, node (22) is almost regarded
as a hub but node (43) is assigned lower hubness despite being con-
nected to more than twice the number of nodes as node (22). This
misclassification is the result of assigning global hubness to local
hubness and of a lack of normalisation that accounts for the size
and density of each community. On the other hand, the dependence
of Pi on the number of communities, the accessibility to the region
(R3) of connector hubs is reduced and to the region of kinless nodes
(R4), forbidden.
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Figure 14: The exemplary graph con-
sisting of three modules (red circles,
blue diamonds, and purple triangles).
Panel (a) shows the formerly intro-
duced functional roles framework
(participation and z-score internal
degree). In panel (b) the two lead-
ing dimensions U1 and U2 from the
SVD of the contribution matrix C are
illustrated.

The participation vector’s reduction onto the leading two dimen-
sions with the SVD is able to detect mainly two insights: A larger
radius R stands for a mixture between higher degree/hubness and
participation. The intramodular projection vector for each module
(dashed lines) ẽ is close to the modular projection (solid lines) m̃ if
the module is mostly internally connected. The projection on this
vector gives for each node a measure of the number of neighbours
in this particular module. The angular distance then is a measure
of how strongly a node participates in each module. Node 45 for
example has a large angular distance from all modular vectors since
it is a kinless node. However the SVD is strongly dominated by the
largest module III and modules I and II are almost not distinguish-
able from each other. Therefore the method, in its 2-dimensional
representation, is not suited for our purposes.

We have seen that our approach is capable of detecting a wide
variety of node’s roles in the mesoscale. However, the usage of
four different metrics makes the illustration and interpretation a
non-trivial task. Therefore we proceed with the illustration of the
method applied to four artificial networks, followed by examples
of biological networks. In the synthetic network examples we show
results for a single realisation since the number of communities
usually differs from realisation to realisation. Still, the results re-
main general. Averaging over many realisations only smoothens
out the roles of outlier nodes, precisely those in which we are more
interested.

Lattice & Ring Lattice graph

(a)

(b)

Figure 15: (a) Lattice network with
each node having degree k = 4.
Infinite size of the lattice is indicated
with dotted lines. (b) Ring lattice
network with 2nd next neighbour
coupling and therefore each node
having degree k = 4

The lattice (see Fig. 15(a)) is widely used in Physics to shape net-
works that tend to be locally connected which can be a sign of
embeddedness into a physical space. This is a reasonable first ap-
proach model for many real world interactions: In a social network
people tend to befriend individuals that are close to them and in
networks from climatological data sites that are close to each other
show similar time series. Of course networks that arise from real
data will show more complicated behaviour, e.g. the small-world-
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effect as illustrated by Watts and Strogatz [28]. Thus, although it is[28] Duncan J. Watts and Steven H.
Strogatz. Collective dynamics of
‘small-world’networks. Nature,
393(6684):440–442, 1998

a rough approximation such a regular networks is an interesting
starting point and furthermore allows analytical predictions since it
is a completely deterministic model.

The regular ring lattice (RL, see Fig. 15(b)) is a variant of the
lattice with periodic boundary conditions in order to eliminate
boundary effects. Each node has the same degree k and therefore
we call the network k-regular. Since no node on this lattice is spe-
cial, a proper clustering is not possible. Nevertheless as the Louvain
method starts with random seed nodes we will be able to detect
communities and we might use their very distinct shape to under-
stand the role of the nodes and develop a theory that is applicable
to other networks, too.

Figure 16: Participation of nodes
along a regular ring lattice of n = 40
nodes that is partitioned into four
communities (green, blue, brown, and
yellow) of equal size ten. Each node is
connected to the first and second next
neighbour and has therefore degree
k = 4. Links across communities
are shown in red and are counted
for the external degree ke. Regarding
this we can distinguish three types
of nodes: Internal nodes with ke = 0
(nodes a and f), border nodes with
the same internal and external degree
ke = ki = 2 (nodes c and d), and those
in between (nodes b and e), named
2nd border nodes.

C1 b fedca

degree, k
internal, ki

4 4 4
4 3 2

external, ke 0 1 2

C4
C2

C3
dispersion, d 0 0.5 1

participation, p 0 0.29 0.42

a&f b&e c&dnodes

Before we approach the general case we want to investigate an
exemplarily situation of a partitioning into four clusters of size 10.
See Fig. 16 for an illustration of a RL with each node having degree
k = 4. Unsurprisingly the modules are all spatially organised and
each form a connected graph. Note that due to such a partitioning
there are exactly three kind of nodes: nodes that are the direct bor-
der between two communities (border nodes), nodes that have only
neighbours in their own community (internal nodes), and those in
between. Since each node is at most connected with two commu-
nities their internal and external degrees completely determines
the participation p and dispersion d, and those values are given
in the adjacent table. We firstly want to focus on the derivation of
a closed formula for the dispersion d since it is easier and it will
be straightforward to expand this to the participation p later on.
The reduced participation vector P′ has one or two elements for all
nodes, because each node is connected to at maximum two mod-
ules. For a node connecting to only one module participation and
dispersion are defined as p = d = 0. For a node with neighbours in
two modules and a given external degree ke and internal degree ki
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the dispersion reads

d = 1− 2 · std(
ki

N1 − 1
,

ke

N2︸ ︷︷ ︸
P′

) (24)

where N1 and N2 are the community sizes of the communities
connected to. For clusters of decent size we might drop the −1 ac-
counting the forbidden self-looping of nodes. As stated before we
want to assume that the network is partitioned into sub-networks
of about even size. As investigated in an example of a RL with
n = 100 nodes (see Fig. 17) this is not necessarily true but an ap-
propriate assumption. Due to normalisation of the participation
vector ki

N1
+ ke

N2
= 1 it is useful to introduce the fraction of internal

to external degree α = ki
ke

= 1− ki
N2

and receive
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Figure 17: Communities sizes on the
ring lattice with n = 100 nodes and
each node degree two. Louvain al-
gorithm detects M = 4 modules of
approximately even size. Horizontal
red line indicates the average commu-
nity size n/M = 25.

d(α) = 1− 2 · std(α, 1− α) =

√
1
2

(
(α− 1

2
)2 + (−α +

1
2
)2
)

(25)

= 1− 2|α− 1
2
| (26)

Let us briefly analyse this result: We showed that each node’s dis-
persion is exclusively depending on its internal and external de-
gree. This holds for all nodes that connect to at maximum two
modules, independent on the particular network topology. But on a
regular ring lattice there will be very distinct values for the fraction
of internal to external edges α ∈ [0, 0.5] since the degree is the same
for all nodes: {0, 1

k , 2
k , ... k/2

k = 1
2} with the first one being internal

nodes (nodes a & f in Fig. 16) and the last one complete border
nodes (nodes c & d). The next highest value α = k−1

k are the nodes
directly behind the border nodes and we want to call them 2nd bor-
der nodes (nodes b & 2). Note that those nodes only exist since the
degree of all nodes is k = 4, in a case for k = 2 they would not exist.
Consequently for high degrees also 3rd border nodes and so on will
occur.

Now we tackle the behaviour of the participation p. It can be
directly derived from the dispersion d but the number of modules
M the RL is divided into is crucial for this. Firstly note that for the
case of one global cluster M = 1 all nodes are internal nodes and
therefore p = d = 0. For the case of two clusters we receive p = d
with d after the just derived equation (26). For the more general
case we have to perform some algebra (see Appendix) to end at

p(α, M) = 1−
√

M
M− 1

(
α2 + (1− α)2 − 1

M

)
(27)

with the limiting case of an infinite amount of communities

p∞(α) = lim
M→∞

p(α, M) = 1−
√

α2 + (1− α)2. (28)
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Figure 18: Participation p and dis-
persion d for three RL networks with
varying degree k. Density plots in
the background show numerical cal-
culations and crosses are analytical
predictions with eqn. 27 and 26. Up-
per panel show case k = 2 where a
majority of nodes is internal nodes
(p = d = 0) and some nodes are border
nodes that have the same amount of
internal and external neighbours and
therefore d = 1. With increasing the
degree to k = 4 (middle panel) 2nd
border nodes emerge that have three
neighbours in their module and one
in another one. In the lower panel
with k = 8 even more in-between
cases occur and therefore the number
of internal nodes is also increasing.
Analytical predictions are not in per-
fect alignment with numerical results
since the numerics assume equal sized
modules and ignore the forbiddances
of self-loops.

In Fig. 18 we compare the numerically calculated (p, d) pairs for
RL of k = 2, 4, 8 with the just derived analytical expressions for the
participation and dispersion. Note again the crucial approximation
is that all communities are the same size, and ignoring the self-
loop ban. The full analytical results for large networks with α in
continuity approximation are shown in Fig. 19, including the two
limiting cases of M = 2 and M→ ∞.

Calculating the global hubness h(g) is not possible for a regular
network since the standard score is not defined for a sample with
standard deviation of zero. However, calculating the local hubness
h(l) gives interesting insights. As illustrated in Fig. 16 nodes in
the centre of modules have the highest internal degree k(i) = k,
whereas nodes at the border between modules have same internal
and external degree k(i) = k(e) = k/2. Thus the central nodes
will have a local hubness h(l) > 0 and the border nodes h(l) < 0.
Eventually existing second border nodes, third border nodes, etc.
will show local hubness values in between those extrema.

In combination with the discussion of the participation we re-
ceive the following insight: Nodes in the centre of modules show
minimal participation and dispersion d = p = 0 and maximal lo-
cal hubness h(l). Towards the borders between modules dispersion
increase up to d = 1/2 and the simultaneously the local hubness
h(l) decreases (see Fig. 20). This can be described as a core-periphery-
structure [41] since the central nodes are strongly connected with

[41] M Puck Rombach, Mason A
Porter, James H Fowler, and Peter J
Mucha. Core-periphery structure in
networks. SIAM Journal on Applied
mathematics, 74(1):167–190, 2014

each other and form a dense core, whereas the border nodes are
only loosely connected with the module and form the periphery. In
the example of the RL the size of the core depends on two factors:
the size of the module n′, as well as the degree k of each node. If
the degree is large the adjacent modules connect with many nodes
across the borders, decreasing the number of nodes that make up
the core. Since the RL is regular the width of this periphery regions
will be the same size for each module, exactly k/2 to each side.

In real world applications the networks are often spatially organ-
ised and therefore form networks not unlike the discussed RL and
lattice but the graphs will unlikely be regular. In fact the degree
of the nodes are a primer for how far-reaching the interactions are
for each node. Therefore modules that consist of nodes with longer
connections will show a wide periphery and modules with shorter
influence range will show a narrow periphery. Thus we can use
the local hubness, as well as dispersion and participation in order
to analyse the borders between modules. Sharp border will show
a narrow region of high participation, whereas fuzzy borders be-
tween modules are more likely to show a broad area of such high
participation nodes. Those insights will be useful for the analysis of
networks that are grounded on a strong spatial organisation, as for
example climate networks.
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Figure 19: Analytical calculations
for participation p and dispersion d
of nodes in a RL in dependence of
the number of communities M. For
M = 1 all nodes are internal nodes and
therefore d = p = 0 (black dot). For
M = 2 dispersion and participation
are still identical p = d but nodes
range from internal nodes to border
nodes p = d = 1 (dashed line). All
in-between values can be reached
for large networks and high degrees
k. For larger number of modules M
dispersion and participation will differ
d > p for non-internal nodes (coloured
lines). The limiting case for an infinite
number of modules is shown with
dotted line.
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Figure 20: RL consisting of n = 50
nodes with degree k = 8. We illustrate
affiliation to one of the M = 6 modules
in the most outer ring. Edges are
shown as lines that connect nodes,
black lines are edges inside modules
and in red lines are edges connecting
nodes that are not in the same module.
In the middle ring the local hubness
h(l) is colour coded. The most inner
ring shows the participation of the
nodes. We see that in the centre, or
core, of modules minimal participation
and maximal local hubness is reached.
Towards the border to other modules
the participation increases since
cross-module edges become more
frequent. At the same time the local
hubness decreases since the number
of inner-modules edges decreases.
The combination of both is a sign of a
core-periphery structure.
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Random graph

The Erdős-Rényi model (ER model) is the most famous one for gen-
erating random graphs. The widely used version has two param-
eters, the number of nodes n and the probability p to connect a
pair of nodes with an edge. The creation of edges independently of
other ones is a strong simplification and might be inappropriate for
modelling real world networks.

Figure 21: Typical ER random graph
with n = 17 nodes and m = 12 edges,
created with a connection probability
of p = 0.1 and resulting in a density of
ρ ≈ 0.09.

Nevertheless it inhabits interesting phenomena as the size of
the largest component and is a good starting point for studying
network approaches to various applications. Although each realisa-
tion will have a different number of edges m the expected density
of the resulting graph is same as the probability p and this will
be approached for infinite sized networks. In a way it is the ex-
act opposite of the just discussed RL that showed strong localised
connectivity and therefore a strong order. The ER in contrast does
not show any localisation since all edges have same probability of
existence.
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Figure 22: Mesoscale metrics density
plots for a ER network of size n = 1000
with connection probability p = 0.1
. Upper panel shows local hubness
h(l) against global hubness h(g),
middle panel participation p against
global hubness h(g), and lowest panel
participation p against dispersion d.

In Fig. 30 the distribution, as density plots, of the four metrics
for the ER graph partitioned into nine modules is shown. Firstly
we note that the distribution of both local and global hubness is
rather small as expected. There is a correlated trend between both
since nodes with a large number of neighbours inside their module
are, in general, those with high number of neighbours in the whole
network. The high values of participation p and dispersion d mean
that all nodes have a significant number of neighbours in other
modules. Most of the nodes have neighbours in all nine modules
since most nodes lie on the diagonal p = d. Nodes directly above
the diagonal are linked to eight modules. There are no peripheral
nodes having neighbours only in their own community (p = d =

0). These observations indicate that the encountered community
structure is very poor, as it is expected for ER graphs. The (p,h(g))
plot is often useful to detect the global roles and functionality of
the nodes since it closely resembles the classification framework
illustrated in Figure 1. Here we see that all nodes have a kinless
contribution to all different modules due to the lack of structure
at the mesoscale. A small number of nodes may be classified as
hubs with h(g) > 2.5. According to the definition of the hubness
approximately 1 % of all nodes will fall into this category.

The definition of the global hubness takes into account the den-
sity, as well as the size of the network. Therefore changing those
parameters in the ER network model does not affect the hubness
distribution (see Fig. 23) In panel (a) we fix the connection proba-
bility to p = 0.1 and vary the size of the network. Although there
are fluctuations in the distributions, due to the finite network size,
the overall distribution is barely affected by increasing the net-
work’s size. In panel (b) we fixed the number of nodes to n = 1000
and change the connection probability p. Overall we see that the
hubness distribution is not strongly influenced increasing connec-
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tion density. However, the minor trend of decreasing of the upper
boundary of the global hubness h(g) is detectable for extremely
dense networks, as predicted by 20.

Summarising we find that ER graphs with no intrinsic commu-
nity structure do not show a diversity of roles when analysing their
mesoscale. All nodes tend to be connected with all modules and
have a high participation. A small number of global hubs is de-
tectable, as we expect 1 % of nodes to exceed the expected degree
and thus have h(g) > 2.5.
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Figure 23: Global hubness h(g) distri-
butions for ER networks with varying
size n and connection probability p.
Upper panel shows distribution of
hubness for fixed p = 0.1 with varying
size. Lower panel has fixed size to
n = 1000 and varying probability p.

Scale-free graph

It is known that many real world networks show extremely broad
and non-homogenous degree distributions. In particular if the de-
gree distribution P(k) follows a power-law P(k) ∝ k−γ it is called
scale-free (SF). Barabási and Albert introduced an evolving network
model where new nodes are entering the network and connecting
with already exiting nodes following a so-called preferential at-
tachment rule [42]. This rule gives an emphasis to nodes that are

[42] Albert-László Barabási and Réka
Albert. Emergence of scaling in ran-
dom networks. science, 286(5439):509–
512, 1999

already highly connected (= have a high degree) and therefore a
scale-free degree distribution with γ = 3 is achieved.

Goh et al. [43] introduced another scale-free network model we

[43] K-I Goh, B Kahng, and D Kim.
Universal behavior of load distribution
in scale-free networks. Physical Review
Letters, 87(27):278701, 2001

will use in this work since it is more universal: See Fig. 24 for an
exemplary network. We start with an empty network consisting of
all n isolated nodes, which are indexed with an index i (i = 1, ..., n).
The control parameter α ∈ [0, 1) is used in order to assign each
node a weight wi = i−α. Now we iteratively create edges between
a pair of nodes (i, j), whereas the probability to draw each node is
proportional to the introduced weights wi. This leads to a scale-free
degree distribution with the exponent γ = 1+α

α . With adjusting
the control parameter α we are able to create networks with degree
distributions that scale with any γ ∈ (2, ∞). In Fig. 24 a small SF
network is shown. It is observable that nodes with small indexes
i = 1, 2, 3 show higher degrees as those with high indexes i =

18, 19, 20. Furthermore we detect in the force-directed placement
that the hubs are in the centre of the network and form a rich-club
since they are all connected to each other.

Here we analyse a SF graph with the same parameters as the ER
graph, consisting of n = 1000 nodes with a density of ρ = 0.1.
In order to receive a moderate power-law degree distribution we
choose α = 1/2 and thus γ ≈ 3 is the power-law exponent. In
Fig. 25 the density plots of the mesoscale parameters are shown.
Firstly we note that global as well as local hubness are much wider
distributed than in the ER graph. For the global hubness this is
expected since the high degree nodes in the SF show much higher
degree than in a compared ER graph. Such hub nodes tend also
to be local hubs with h(l) > 2.5 since many of their neighbours
are in their module. In terms of participation p and dispersion d
the results are very similar to the ones for the ER: All nodes show
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Figure 24: Goh model network with
n = 20 nodes, connection probability
p = 0.18, α = 1

2 and therefore
γ = 3 . Left Panel: Nodes are placed
along the ring to show that nodes
with small indexes (pink) have a
high degree, whereas nodes with
high indexes (cyan) will receive a
small amount of edges. Right panel:
Force-directed placement of the same
network illustrates that the high
degree nodes are also the central ones
and strongly connected amongst each
other and therefore form a rich-club. 1
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extremely high values. This indicates that the community structure
in such SF networks is very poor. Furthermore due to the relatively
high density of connections almost all nodes connect to all modules
and therefore lay on the diagonal p = d.

In terms of the role the nodes play in the mesoscale the poor
community structure makes all nodes, independent of their degree
kinless nodes. Note that the high degree nodes are therefore hubs
that are able to access all modules, however since the modules are
not very distinct a segregated processing of information can not be
achieved there. In the following section we will discuss networks
that show such an intrinsic modular structure.
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Figure 25: Mesoscale metrics density
plots for a SF network of size n = 1000
with connection probability p = 0.1
. Upper panel shows local hubness
h(l) against global hubness h(g),
middle panel participation p against
global hubness h(g), and lowest panel
participation p against dispersion d..
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Modular graph

Figure 26: A flat modular network
consisting of M = 2 modules (upper
and lower ellipses) with each n′ = 11
nodes. Inside each module the nodes
are connected with a probability of pin
(cyan edges) and across modules with
a probability of pex (red dashed edges).
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Figure 27: Mesoscale metrics density
plots for a FM network of size n =
1000 consisting of M = 5 modules
of even size n′ = 200 with internal
connection probability pin = 0.3 and
external pex = 0.05. Upper panel
shows local hubness h(l) against
global hubness h(g), middle panel
participation p against global hubness
h(g), and lowest panel participation p
against dispersion d.

Many real world networks show a modular structure. A simplis-
tic way of creating networks with those characteristics is the flat
modular network (FM, see Fig. 26). For this we firstly create M ER
networks of size n′ and choose a relatively high connection proba-
bility pin. Now we cross-connect those created modules randomly
with a connection probability pex In order to create a detectable
modular structure we have to choose pex < pin. For p = pex = pin

it would result in a normal ER graph with connection probability p
and n = M · n′ nodes.

We analyse such a FM graph consisting of n = 1000 nodes that
are grouped into M = 5 equal sized modules with n′ = 200 nodes.
Inside the modules pairs of nodes are connected with probability
pin = 0.3 and externally with probability pex = 0.05.

We note that the local and the global hubness are strongly corre-
lated, see Fig. 27, mainly because they reflect the internal degrees of
the nodes. The small amount of external connections per node has
a weak influence on the relation between local and global hubness.

Focusing on the measures of participation and dispersion we
find that their values are much lower than those observed before in
ER and SF networks. This happens because most nodes are strongly
connected inside their module and only weekly connected to the
other modules. The communities are well defined in this case.
However, only a small amount of nodes have neighbours in only
one module and thus p = d = 0. This shows that the strong
community structure does not go in hand with a strong core of
nodes inside each module. In contrast the small amount of external
edges is evenly distributed amongst all nodes and therefore almost
all of them show external affiliations. In the FM graph there is
no dependence between h(g) and p. This occurs because external
connections are created at random and therefore all nodes have the
same probability of connecting to other modules.

In the density plot we investigate only a particular parameter set
of internal and external connection probability. The chosen param-
eters result in low values for participation p, however we know that
the ER network as a subset of such modular graphs with pin = pex

show high participation p → 1. Therefore we investigate in Fig. 28

five different FM networks with varying external connection prob-
ability pex ∈ {0, 0.025, 0.1, 0.2, 0.3} while the internal probability is
fixed to pin = 0.3. A FM network with pex = 0 consists of sepa-
rated modules that are not cross connected, therefore all nodes have
exclusively neighbours in their own module and accordingly show
all the minimal participation p = 0. With increasing the external
connection probability pex nodes connect with other modules and
therefore show increased participation p. Note that the random dis-
tribution of the edges shows a random distribution of the participa-
tion values around a mean value (as indicated with dashed vertical
lines). The further increasing of the amount of external edges shifts
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the nodes to even higher participation values. In the limiting case of
pex = pin = 0.3 all nodes show very high participation values, same
as an ER graph.

Since the participation of the nodes in a FM graph is very dis-
tinctively distributed around a mean value that increases with
higherpex we analyse this behaviour in Fig. 29. Also we derive an
analytical formula for the mean participation (see Appendix) of all
nodes in a FM

〈p〉 = 1−
√

M
M− 1

((( pin
Σ

)2
+ (M− 1)

( pex

Σ

)2
)
− 1

M

)
. (29)

This is achieved by calculating the participation of a node that has
the mean value of neighbours to each of the modules. We see that
this analytical expression is in good agreement with the numer-
ical results (Fig. 29). For pex → 0 the analytical expression fully
matches 〈p〉 = 0 for the unconnected modules. Some discrepancy
is observable for the case were the ER networks are approached
pex → pin: The prediction is 〈p〉 = 1 but the numerical results are
below. This happens since the participation is bounded in [0, 1] and
when averaging over all nodes some of them will show lower than
the mean value and that can not be compensated by the bounded
distribution ≤ 1. The analytics hold better for dense networks since
the chosen mean-field approach is suited for networks with a high
number of edges, were the law of large numbers makes the mean
approximation more eligible.

In real networks the community organisation happens as the
consequence of functionally related nodes being gathered together.
In this manner groups of specialised function are segregated, re-
stricting the influence of nodes with different function on them. In
the FM model the communication between the modules is limited
due to the overall small dispersion.

Modular graph with scale-free attachment

Finally we want to introduce a network that have a scale-free de-
gree distribution and thus hub structure, as well as a modular or-
ganisation of nodes. This centralised modular model (CM) is created
in the first step exactly like the FM: We create M modules of each
n′ nodes and connect those internally with the probability pin. The
external links between modules are created following a preferential
attachment rule. Similar to the SF network generation method as in-
troduced before the nodes of each modules of size n′ are indexed as
i (i = 1, 2, . . . , n′) and are assigned a weight wi = i−α, where α is a
control parameter in [0, 1). When connecting two different modules,
nodes from each module are selected with a probability propor-
tional to their weight. The degree distribution of network generated
with this method follows a power law with γ = (1 + α)/α. In this
case, the hubs from the different modules become interconnected
and may form a so called rich club. This combination of character-
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Figure 28: We investigate the par-
ticipation vs. global hubness scatter
(p, h(g)) for five flat modular networks
consisting of M = 5 modules of size
n′ = 200 with internal connection
probability of pin = 0.3 and varying
pex ∈ {0, 0.025, 0.1, 0.2, 0.3}. For pex = 0
(orange dots) all nodes are only con-
nected inside their modules and no
cross connections exist. Therefore all
nodes are internal nodes with p = 0.
With introducing external connections
with probability pex = 0.025 (red dots)
nodes show increased participation
due to those external connections.
This increased participation is observ-
able for further increasing of pex . For
pex = 0.3 (blue dots) the network
becomes an ER network since exter-
nal edges have the same probability
as external. Therefore we receive a
plot similar to that case of a random
network with almost maximal partic-
ipation p → 1. Vertical dashed lines
indicated the mean participation 〈p〉
for each of the five networks. Note that
we used the a priori partition into the
five communities here.
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Figure 29: Mean participation 〈p〉 for
FM networks of two different internal
connection probabilities (pin = 0.2
and pin = 0.01 as inlay) with varying
external connection probabilities
from pex = 0 up to the ER graph
case pex = pin. Numerical means are
shown with dashed red line and the
standard deviation of the participation
of all nodes as grey shaded area. The
participation is minimal for separated
modules (pex = 0) and increases
up to ≈ 1 for the ER network cases.
This is in good accordance to our
analytics (solid black lines). Note
that the analytics fit better in the case
of a denser network since the law
of large numbers makes our mean
approximation more eligible for higher
numbers of connections.
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istics, modular structure with centralised interconnectivity occur in
neuronal networks and so we want to understand their influence on
the mesoscale.

Similar to the FM the CM shows a correlation between local
and global hubness. However, in the CM model the correlation is
weakened since few nodes accumulate most of the links between
modules. Some of the nodes that are hubs for the external connec-
tivity happen to be sparsely connected locally. Overall, due to the
preferential attachment, global hubness takes larger values in the
CM than in the FM model.

Also the (p, h(g)) plot for the CM model is very similar to the
FM but the hubs clearly stand out – they have larger hubness and
participation. Thus the hubs are connector hubs that interconnect
the different modules. In the (p, d)-plane, the hubs lie on the p = d
line because they connect with the four modules. Due to this cen-
tralisation non-hub nodes receive less external links and see their
participation lessened because they connect to less modules such
that for them d > p. In the CM model the hubs densely connect
with all the modules allowing them to integrate information from
the distinct functional groups.
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Figure 30: Mesoscale metrics density
plots for a CM network of size n =
1000 consisting of M = 5 modules
of even size n′ = 200 with internal
connection probability pin = 0.3 and
external pex = 0.05. Upper panel
shows local hubness h(l) against
global hubness h(g), middle panel
participation p against global hubness
h(g), and lowest panel participation p
against dispersion d.

Conclusion

The investigation of synthetic graphs is very helpful for under-
standing the introduced mesoscale measures hubness, participation,
and dispersion. As showed the participation and dispersion are
strongly connected with the modularity of the network as only a
strong modular structure will enable nodes to show low dispersion
and participation. This is also connected with the discussion of the
RL graph that is simplified network of localised connectivity. There
we showed that participation and local hubness are suitable primers
to detect and characterise the borders between spatially organised
modules. Here a strong modular structure is associated with a nar-
row region of high hubness, whereas long ranging connections will
lead to a blurred and wide border between the modules and there-
fore a overall low participation. Since SF and ER network do not
show a strong community structure they also showed overall high
participation.

As intrinsic to them SF network do show a hub structure. How-
ever, due to the high participation for all nodes those hubs do not
receive an outstanding position in the mesoscale of the network. We
then created a modular network with an on-top hub structure that
interconnects the modules and enables the integration of the infor-
mation of the segregated information from the individual modules.
As we will show in the following chapter many real-world biolog-
ical neuronal networks show such a structure in order to optimise
the information processing.



Deciphering segregation and integra-
tion in neuronal networks

In this chapter we study the mesoscale structure of real neuronal
networks. We start with the fully mapped neuronal network of the
nematode Caenorhaditis elegans and finish with the corticocortical
connectivites from the cat and human brains. Previous studies have
shown that these networks combine the existence of modules of
functionally related neurons or regions with the presence of highly
connected hubs [19] [20] [22]. The segregation into modules allows [19] O. Sporns and G. M. Tononi.

Classes of network connectivity and
dynamics. Complexity, 7(1):28–38, 2001

[20] Gorka Zamora-López, Changsong
Zhou, and Jürgen Kurths. Exploring
brain function from anatomical con-
nectivity. Frontiers in neuroscience, 5,
2011

[22] G. Zamora-López, C. S. Zhou, and
J. Kurths. Cortical hubs form a module
for multisensory integration on top
of the hierarchy of cortical networks.
Front. Neuroinform., 4:1, 2010

the brain to handle information of different sensory systems in a
temporal and spatial parallel manner. However, the brain needs
to combine – integrate – the multisensory information in order to
create a comprehensive understanding of the environment. It is
believed that the neural hubs aid in the integration because of their
capacity to reach information of different sensory systems.

C. Elegans

Caenorhaditis elegans (C. elegans) is a roundworm of about 1 mm
length and is widely used as a model organism in neuroscience
since its whole connectome has been mapped [44]. It has been [44] Lav R Varshney, Beth L Chen, Eric

Paniagua, David H Hall, and Dmitri B
Chklovskii. Structural properties of
the caenorhabditis elegans neuronal
network. PLoS computational biology,
7(2):e1001066, 2011

mapped by electron micrographs of serial thin section in various
studies [45]. The nervous system consists of a large somatic part

[45] Samuel Ward, Nichol Thomson,
John G White, and Sydney Brenner.
Electron microscopical reconstruction
of the anterior sensory anatomy of
the nematode caenorhabditis elegans.
Journal of Comparative Neurology,
160(3):313–337, 1975

along the body and a small pharyngeal protobrain in the head area.
Despite the worm’s small size (1 mm long) and simple nervous sys-
tem it shows a broad range of non-trivial behaviour [46].The animal

[46] William R Schafer. Deciphering
the neural and molecular mechanisms
of C. elegans behavior. Current Biology,
15(17):R723–R729, 2005

is able to discriminate and move towards or away from chemicals,
temperature, or food sources. Different strains of C. elegans are
shown to either feed in groups (social) or alone (solitary) [47]. Each

[47] Mario de Bono. Molecular ap-
proaches to aggregation behavior and
social attachment. Journal of neurobiol-
ogy, 54(1):78–92, 2003

sex (male and hermaphrodite) show specific behaviour such as egg-
laying or mating behaviour and also different number of neurons.
Most of this behaviours are influencing each other, for example, in
stressful environments egg-laying is suppressed.

The nervous system consists of neurons that connect with each
other via synapses. Therefore we will represent the neurons by
nodes and the synaptic connections as edges. Although different
types of synapses are existing, electrical (or gap junctions) and
chemical, we do not distinguish between them. Here we use the
data from an adult hermaphrodite worm [48] in a binary form. The [48] Beth L Chen, David H Hall,

and Dmitri B Chklovskii. Wiring
optimization can relate neuronal
structure and function. Proceedings of
the National Academy of Sciences of the
United States of America, 103(12):4723–
4728, 2006
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Figure 31: Anatomy of an adult C.
elegans hermaphrodite. Panel (a)
shows a microscopic image of the
roundworm. Panel (b): Schematic
drawing of anatomical strictures,
left lateral side. C. elegans has an
unsegmented, cylindrical body shape
that is tapered at the ends. The cells
of the nervous system are organised
into ganglia in the head and the tail
with a majority in the head around the
pharynx (left side).

network consists of 302 neurons but we restrict to the largest con-
nected component of 279 nodes and a total of 2285 edges [39]. We[39] Dominik Traxl. C. elegans - Neural

structure & dynamics. Master’s thesis,
Ludwig-Maximilians-Universität
München, 2012

use a Louvain-partition of the network in four communities of 50,
51, 88 and 90 neurons each. In Fig. 31(c) the position of all neurone
along the body of the worm are shown, together with the number
of neurons it connects to (degree k) and the community it belongs
to. We see that the modules are spatially organised: In the proto-
brain in the head consists of many densely connected neurons with
high degree and is partitioned into two modules (light and dark
blue). The large somatic nervous system is divided into two parts
(red and yellow), too. The yellow modules stretches from the head
to the tail, whereas the red one focusses on the frontal half. The
nodes of highest degree are at the protobrain and the region with
the next highest degrees is the tail. The tail has long-range axons to
the head since some of the nodes belong to the spatially very dis-
tant blue modules. Such node will likely be connector nodes in the
mesoscale structure. Note that many of such distinct node’s occur
pairwise, as indicated in some cases with ovals. This is due to the
bilateral symmetry along the body.

When analysing the roles of nodes in the network, see results
in Fig. 34, we find some characteristics similar to those observed
in the synthetic networks and other distinctive properties. Similar
to SF networks the C. elegans shows broad hubness distributions
with local and global hubness being highly correlated. The range of
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h(g) is larger than that of h(l) indicating that the hubs might form a
rich club. On the other hand, many nodes have significant negative
hubness. The participation and the global hubness are correlated
in this case. Non-hubs have low participation and hubs have high
participation. Altogether these observations clearly reflect the mod-
ular and hierarchical organisation of the network consisting of well
defined communities (as shown by the large amount of nodes with
negative hubness and very low participation) with the interconnec-
tions centralised by a set of global hubs forming a rich-club (hubs
are both locally and globally hubs, and they have participation close
to p = 1). In the (p, d) we appreciate that many nodes escape the
p = d line and take larger values of dispersion than of participation.
This behaviour, not observed in the synthetic network models, is
typical of connector nodes which have dispersed connectivity but
do not connect with all the communities.

As discussed before the nervous system of the C. elegans is sub-
divided into two main organisatory parts. The small proto-brain’
located in the pharynx and the rest of neurons are symmetrically
arranged, left and right, along the ventral cord. We detect this bi-
lateral symmetry in the pairwise occurrence of almost identical
hubness and participation. Furthermore note that the high degree
connectors are all located in the proto-brain the likely receives cen-
tral organisatory tasks, similar to the human brain, that has higher
integrator functions than the spinal cord (see Fig. 33). However,
many nodes show a low participation p since they connect almost
only in their own modules, those modules are the centres of segre-
gated information processing.
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Figure 32: Mesoscale metrics density
plots for C. elegans neuronal network.
Upper panel shows local hubness
h(l) against global hubness h(g),
middle panel participation p against
global hubness h(g), and lowest panel
participation p against dispersion d.
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Figure 33: C. elegans neurons at their
spatial location along the body from
the head to the tail alogn the hori-
zontal axis. Vertical axis indicates the
degree k and colour the participation p
of each node. The high degree nodes
(hubs) are at the same time connectors
and mostly located at the head and to
smaller amount at the tail. The ma-
jority of nodes has low degree and is
located along the whole length of the
worms body.
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Cat

The corticocortical connectivity of cats has been recently investi-
gated to understand the relation between structure and function in
the brains of higher organisms. The database used here is a com-
bination of various published datasets [49]. We use a version with[49] JW Scannell, GAPC Burns,

CC Hilgetag, MA O’Neil, and Mal-
colm P Young. The connectional
organization of the cortico-thalamic
system of the cat. Cerebral Cortex,
9(3):277–299, 1999

n = 95 cortical regions interconnected with m = 1829 white matter
fibers. Here, we consider them undirected and unweighted. We use
the Louvain partition into four modules of sizes 24, 21, 23 and 27.
The analysis of the mesoscale reveals very similar to that found for
the C. elegans despite being only a third of the size and much more
dense; ρcat ≈ 20 % and ρeleg ≈ 6 %. Global and local hubness are
correlated with h(g) achieving again larger values than h(l). Global
hubness and participation are also correlated. The non-hubs tend
to have very low values of participation indicating that they are
tightly connected inside their communities. The hubs, on the con-
trary, have large participation showing that they are well connected
with all the four communities. In the (p, d) plot we see, in contrast
to the C. elegans network, that the nodes are not likely to be at the
pmax(d) that is reached if nodes are connected to only two modules.

Altogether the two neuronal networks analysed so far show
strong similarities in their structure. We now investigate the net-
work of a primate to compare the information processing strucutres
of a even higher developed animal.
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Figure 34: Mesoscale metrics density
plots for cat neuronal network. Upper
panel shows local hubness h(l) against
global hubness h(g), middle panel
participation p against global hubness
h(g), and lowest panel participation p
against dispersion d.
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Macaque monkey

Figure 35: Self-portrait by the depicted
macaque nigra female. [50]

[50] Macaque – Wikipedia, the free
encyclopedia, 08 2014

Investigating the anatomical connectivity of the macaque mon-
key gives insights in the neuronal network organisation for a non-
human primate. Macaques are investigated by neuroscientists as
well as social scientists since they show intricate social structure.
Here we use a data set that consists of n = 71 regions in the en-
tire cerebral cortex [51] connected via m = 438 edges, resulting in

[51] Jack W Scannell and Malcolm P
Young. The connectional organization
of neural systems in the cat cerebral
cortex. Current Biology, 3(4):191–200,
1993

a density of ρ = 17 %. The density lies in between the one of the
two previously discussed networks and nevertheless the mesoscale
analysis gives similar results, indicating that the found structural
properties are universal in neuronal networks:

A partitioning into four modules of sizes 18, 14, 23, and 16 max-
imises the modularity, the same number of modules as for cat and
C. elegans. Both hubness indexes are widely spread as in SF net-
works and strongly correlated: The global hubs are at the same
time local hubs. Those hubs do also show the highest values of par-
ticipation, they are kinless hubs and therefore able to connect the
different modules in order to enable communication between the
four modules. Those are made up of connector, as well as periph-
eral non-hubs. Those low-degree nodes with limited or no direct
access to other modules enable the segregated information pro-
cessing. In the (p, d) we see that nodes with a high participation p
show the same dispersion d since they connect to all four modules.
Nodes with smaller p in contrast are not on the diagonal p = d
since they connect to only three or two of the modules. By defini-
tion nodes that connect to only a single module have p = d = 0.
The direct accessibility of all modules by the hubs further confirms
their integrator function.
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Figure 36: Mesoscale metrics density
plots for macaque brain connectiv-
ity network. Panel (a) shows local
hubness h(l) against global hubness
h(g), panel (b) participation p against
global hubness h(g), and panel (c)
participation p against dispersion d.
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Human

Figure 37: Dorsal view of the human
brain nodes at the physical location.
Dot’s size indicates the degree of
each node and the the colour the
community it belongs to as detected
by the Louvain algorithm. Partitioning
is spatially organised into modules
that are also functionally grouped.
However, some nodes are grouped
into distant modules. For example
a high degree node in the frontal
lobe (yellow) is affiliated with the
parietal lobe (red). Such nodes will
have a connector function between the
modules.

frontal lobes

right hemishpere

left hemishpere

midbrain

parietal & 
occipital

For the human brain anatomical connectivity we used data first
discussed in [52]. The connectivity is derived from non-invasive[52] Patric Hagmann, Leila Cammoun,

Xavier Gigandet, Reto Meuli, Christo-
pher J Honey, Van J Wedeen, and Olaf
Sporns. Mapping the structural core of
human cerebral cortex. PLoS Biology,
6(7):e159, 2008

diffusion MRI able to detect white matter tracts that crisscross the
human brain. We work with a binary adjacency matrix of a parcel-
lation into n = 994 brain regions, after eliminating four isolated
nodes, interconnected by m = 13520 white matter tracts. The net-
work is partitioned into six modules of sizes 177, 143, 104, 156,
155 and 259. Those modules are illustrated with the node’s dorsal
position in Fig. 37. We see that the modules are strongly spatially
organised and furthermore those modules show functional tasks:
Firstly we detect that outer left and right hemispheres are forming
separated modules, where the right hemisphere itself is subdi-
vided into a rear and middle part. Furthermore the frontal lobes
of both hemispheres form a joint module. Similarly the midbrain
area with the limbic systems forms a central module. In the rear of
the brain the parietal and occipital lobes form a joint module. Al-
though most nodes are forming modules with spatially close nodes
some of them belong to very distant modules, likely giving them a
connector function between modules.

Now we want to investigate the functional roles of the different
nodes in this mesoscale structure in more detail: In the correspond-
ing plots of Fig. 38 we can clearly detect again the presence of hubs.
In contrast to the observations of the two previous networks, in this
case the hubs only show intermediate values of participation as ob-
served in the (p,h(g)) plot. The majority of nodes show a very low
hubness and also very low participation indicating a well-defined
modular organisation as in the networks of the C. elegans and of
the cat. The lack of a high participation necessary for integration
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is a very interesting discrepancy with the other networks. One
possible explanation for this difference might be the known lim-
itation of tractography methods to recover long-range, especially
those crossing through the corpus callosum from one brain hemi-
sphere to the other. This limitation could have reduced the number
of connections in the data between the homologous hubs in both
hemispheres and let their participation appear diminished.
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Figure 38: Mesoscale metrics density
plots for human brain connectivity
network. Upper panel shows local
hubness h(l) against global hubness
h(g), middle panel participation p
against global hubness h(g), and
lowest panel participation p against
dispersion d.

Conclusion

Summarising we can state that the analysis of different topological
roles that nodes can play inside the mesoscale structure of a net-
work can give valuable insights in the structure and functionality
of neuronal networks: we are able to link the functional task of in-
formation integration with the structural of connector and kinless
hubs. On the other side the segregated information processing can
only be achieved by nodes that are peripheral without strong con-
nections to other modules. Both structural properties are present in
the four neuronal networks we analysed. In particular we highlight
the striking similarities in the structure of the C. elegans and the
cat despite being two networks of very different scales. The first
consists of single neurons that are connected with axons and the
latter brain areas linked by white matter tracts, both consisting of
millions of cells themselves. The omnipresence of integratory hubs
and strong modular structure gives the neuronal networks excellent
information processing abilities.





Climate networks – Investigating the
Indian Summer Monsoon

Although network theory has been successfully applied to many
different technological and scientific problems it has only re-
cently been adopted to climate research. This mainly focusses on
interaction-networks, where links and their strength are based
on a correlation measurement between chosen climate variables
at different locations [53] [54]. Mutual information in combina- [53] Jonathan F Donges, H CH Schultz,

Norbert Marwan, Yong Zou, and
Juergen Kurths. Investigating the
topology of interacting networks. The
European Physical Journal B-Condensed
Matter and Complex Systems, 84(4):635–
651, 2011

[54] AA Tsonis and PJ Roebber. The
architecture of the climate network.
Physica A: Statistical Mechanics and its
Applications, 333:497–504, 2004

tion with betweenness centrality, for example, has been used to
identify ocean surface currents as important regions in the climate
system [55]. More recently also the community structure in pre-

[55] Jonathan F Donges, Yong Zou,
Norbert Marwan, and Jürgen Kurths.
The backbone of the climate network.
EPL (Europhysics Letters), 87(4):48007,
2009

cipitation events [56] as well as sea surface temperature [57] has

[56] N Malik, N Marwan, and J Kurths.
Spatial structures and directionalities
in monsoonal precipitation over south
asia. Nonlinear Processes in Geophysics,
17(5):371–381, 2010

[57] A Tantet and HA Dijkstra. An
interaction network perspective on
the relation between patterns of sea
surface temperature variability and
global mean surface temperature.
Earth System Dynamics, 5:1–14, 2014

been analysed and shown to be strongly spatially organised due
to physico-geographical factors. Here we use mesoscale analysis
on data from precipitation during the Indian Summer Monsoon
(ISM) and extend the analysis in order to extract the different roles
sites play in this mesoscale structure. This chapter is organised as
follows: Firstly we briefly introduce the phenomena ISM and the
topology of the Indian subcontinent. Then we discuss the used pre-
cipitation data sets APHRODITE and TRMM. Thirdly we review
event synchronisation as a method to measure similarity between
time series. This is followed by an analysis of the mesoscale struc-
ture of the ISM extreme precipitation. Finally we utilise hubness
and participation in order to detect high impact regions in the In-
dian subcontinent, completed by a discussion of our findings.

The Indian Summer Monsoon

Figure 39: Average monthly rain-
fall and temperature for India from
1960–1990. 75 % of the annual pre-
cipitation occur during the summer
monsoon months June, July, August,
and September.

The Indian Summer Monsoon (ISM) is among the most promi-
nent phenomena of the climate system, influencing large parts of
the tropics. It originates from the seasonal reversal of wind direc-
tions which themselves are caused by differential heating of land
and surrounding water masses. This results in a strong seasonal-
ity of rainfall, with enormous socioecological impact on the Indian
subcontinent [58]. The economical influence is given by the high

[58] Sulochana Gadgil. The Indian
monsoon and its variability. Annual
Review of Earth and Planetary Sciences,
31(1):429–467, 2003

population density on the Indian subcontinent and high depen-
dency on agriculture which is mainly rain-fed. Any fluctuations
from usual precipitation might also have cascading effects on other
economical sectors, such as construction. Furthermore the ISM is
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considered a tipping element in the global climate system that might
undergo drastic changes with minor changes of external parameters
as planetary albedo [59]. Hence, understanding the monsoon is an[59] Timothy M Lenton, Hermann

Held, Elmar Kriegler, Jim W Hall,
Wolfgang Lucht, Stefan Rahmstorf,
and Hans Joachim Schellnhuber.
Tipping elements in the earth’s climate
system. Proceedings of the National
Academy of Sciences, 105(6):1786–1793,
2008

important task for climatologist and also vital for the inhabitants of
this region.

The Indian peninsula receives tremendous amounts of precipita-
tion during the months of the ISM ranging from June to September
(see Fig. 39) [60]. This is mainly triggered by onshore winds from

[60] Bodo Bookhagen and Douglas W
Burbank. Toward a complete hi-
malayan hydrological budget: Spa-
tiotemporal distribution of snowmelt
and rainfall and their impact on river
discharge. Journal of Geophysical
Research: Earth Surface (2003–2012),
115(F3), 2010

the Southwest (see Fig. 40). Those are themselves caused by the dif-
ferent heating of land and sea and can be considered a large-scale
sea breeze. We distinguish between two branches, a western one,
originating from the Arabian Sea and spreading on the southern
part of the peninsula. The moist air masses hit at first the Western
Ghats and later encounter the high mountains of the Himalayas.
Those heights lead to precipitation in the adjacent regions, known
as orographic precipitation. The eastern branch moves northwards in
the Bay of Bengal and breaks over Bangladesh and Assam. It is re-
flected westwards at the Himalayas and thus both branches merge
later in North Pakistan.

During winter the wind directions are inverted, leading to the
influx of dry air masses from the northeastern laying central asian
regions. Given the offshore flow of air masses the winter monsoon
brings less moisture. However, during its passage of the Bay of
Bengal it absorbs water and therefore is responsible for rain in the
most southern regions of India.

Figure 40: Indian subcontinent, colour
coded the elevation above sea-level:
Left panel shows furthermore im-
portant topographical features. Right
panel indicates main wind directions
during Indian summer monsoon (ISM)
with red and during winter monsoon
(WM) with blue arrows. In the sum-
mer the wind is coming from South
West, and during winter from the
North East. The ISM splits into the
Arabien Sea branch (AS) and the Bay
of Bengal branch (BB).
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Data

For the investigation we use two types of observational data (see
table 3). Firstly we use reanalysis gridded daily rainfall data for the
years 1951–2007. This rain gauge measurement was provided by the
Asian Precipitation – Highly Resolved Observational Data Integration To-
wards the Evaluation of Water Resources project (APHRODITE [61] [62]). [61] Akiyo Yatagai, Kenji Kamiguchi,

Osamu Arakawa, Atsushi Hamada,
Natsuko Yasutomi, and Akio Kitoh.
Aphrodite: Constructing a long-term
daily gridded precipitation dataset
for asia based on a dense network of
rain gauges. Bulletin of the American
Meteorological Society, 93(9):1401–1415,
2012

[62] Akiyo Yatagai, Osamu Arakawa,
Kenji Kamiguchi, Haruko Kawamoto,
Masato I Nodzu, and Atsushi
Hamada. A 44-year daily gridded
precipitation dataset for asia based on
a dense network of rain gauges. Sola,
5:137–140, 2009

It is reliable long-term data, however the data was only collected for
the land masses and therefore no measurements over the ocean are
given. Secondly, we use satellite data of the years 1998–2012 from
the Tropical Rainfall Measuring Mission (TRMM [63]). This data of-

[63] George J Huffman, David T
Bolvin, Eric J Nelkin, David B Wolff,
Robert F Adler, Guojun Gu, Yang
Hong, Kenneth P Bowman, and
Erich F Stocker. The TRMM multi-
satellite precipitation analysis (TMPA):
Quasi-global, multiyear, combined-
sensor precipitation estimates at fine
scales. Journal of Hydrometeorology,
8(1):38–55, 2007

fers high spatial resolution as well as coverage of both, land and
sea. However, it is only available for the most recent 15 years and,
therefore, long-term effects are not observable.

Both data sets were analysed previously in terms of extreme
rainfall events synchronisation using the climate network ap-
proach to extract spatial structures of extreme precipitation during
ISM [64]. Here we add the community detection to the analysis

[64] Veronika Stolbova, Paige Martin,
Bodo Bookhagen, Norbert Marwan,
and Jürgen Kurths. Topology and
seasonal evolution of the network of
extreme precipitation over the Indian
subcontinent and Sri Lanka. Nonlin.
Processes Geophys. (in press), 2014

of the extreme rainfall synchronisation. Using the measures intro-
duced before (hubness, participation, and dispersion) we identify
the roles of single nodes in the network of extreme precipitation.
This analysis can help to give insights in the important spatial pat-
terns of the extreme precipitation during the ISM.

Properties APHRODITE TRMM
Period 1/1951 – 12/2007 1/1998 – 12/2012

Geographical coverage (62.5◦– 97.5◦E, 5◦– 40◦N) (62.375◦– 97.125◦E, 5.125◦– 39.875◦N)

Spatial resolution 0.5◦ 0.25◦

Temporal resolution daily precipitation 3-hourly, resampled to daily precipitation
Number of grid points 70× 70 = 4900 140× 140 = 19600

Type interpolated rain-gauge data satellite-derived
Table 3: Properties of the used data
sets Asian Precipitation – Highly Resolved
Observational Data Integration To-
wards the Evaluation of Water Resources
(APHRODITE [61]) and Tropical Rain-
fall Measuring Mission (TRMM [63]).
For both data sets we are interested
only in the monsoon season consisting
of June, July, August, and September,
thus 122 days per year.

Event synchronisation

Both data sets provide us with time series of rainfall events during
the whole year. Since we are especially interested in the ISM we
will restrict the discussion to the data of the ISM period from the
1st of June through the 30th of September for each year, consisting
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of 122 days per year.
Rainfall time series inhabit often a high frequency component

and are therefore less smooth and continuous as other meterolog-
ical quantities such as air temperature, or air pressure. In order to
quantify the similarity of rainfall dynamics on different geographi-
cal sites, event synchronisation (ES) was proposed [56]. This method[56] N Malik, N Marwan, and J Kurths.

Spatial structures and directionalities
in monsoonal precipitation over south
asia. Nonlinear Processes in Geophysics,
17(5):371–381, 2010

was introduced by Quiroga et al. [65] and first applied to rat and

[65] R Quian Quiroga, T Kreuz, and
P Grassberger. Event synchronization:
a simple and fast method to measure
synchronicity and time delay patterns.
Physical review E, 66(4):041904, 2002

human electroencephalography (EEG) data but is suited to mea-
sure synchronisation and time delay patterns between all types of
signals that inherit the occurrence of adequate events. In the frame-
work of precipitation we define extreme events as days that receive
rainfall amounts above the 90th percentile for all days at a given
location.

The synchronisation between two grid points i and j is measured
via the number of event pairs from both sites matching in time.
The leading of each time series in those matching pairs can be
considered. However, here we will restrict the discussion to an
undirected network. An event l that occurs at grid site i at time ti

l
is considered to be synchronised with an event m occurring at site j
at time tj

m if it is within the maximal time lag of half the minimum
time between two succeeding rainfall events τ

ij
lm = min{ti

l+1 −
ti
l , ti

l − ti
l−1, tj

m+1 − tj
m, tj

m − tj
m−1}. Then c(i|j) denotes the number of

times an event appears in i shortly after it appears in j, i. e:

c(i, j) =
si

∑
l=1

sj

∑
m=1

Jij (30)
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Figure 41: Pairwise event synchroni-
sation (ES) for three event time series
A, B, and C of length 8: Filled boxes
indicate occurrence of an event. Solid
lines across time series shows that
both events are inside the time lag
τij and therefore considered to be
synchronised. Site A shows minor
synchronisation with B as one pair of
event occurs at the same time step 4. B
and C are strongly synchronised (three
pairs of events). Note that ES is not
transitive since A does not show any
synchronisation with C.

c(i,j) A B C
A 1/2 0

B 1/2 1/2

C 0 5/2

Table 4: Event synchronisation cal-
culation between three example time
series shown in Fig. 41. Diagonal
is empty since we do not calculate
self-synchronisation. In an adjacency
matrix those entries would be empty
since self-loops are not allowed.

Jij =


1 if 0 < ti

l − ti
m < τ

ij
lm

1/2 if ti
l = tj

m

0 else.

(31)

Then we define the strength of synchronisation

Qij =
c(i|j) + c(j|i)√
(si − 2)(sj − 2)

(32)

between time series at different grid sites i and j and normalise it to
be 0 ≤ Qij ≤ 1. Hence Qij = 1 stands for complete synchronisation
and Qij = 0 for the absence of any synchronisation. We conclude
this analysis for all pairs of grid points and receive a square, sym-
metric matrix which represents the strength of synchronisation of
extreme rainfall events between each pair of grid points. Finally we
apply a threshold θ and yield a binary adjacency matrix

Aij =

1 , if Qij > θ ,

0 , else
(33)

that will be used as adjacency matrix to construct an undirected,
and unweighted graph. Here the threshold θ is chosen for each



climate networks – investigating the indian summer monsoon 55

data set so that 5 % of the strongest links are kept. Note that we did
not calculate the self-synchronisation Qii = 1

2
si+si√

(si−2)(si−2)
≈ 1,

consequently forbidding self-loops in order to receive a simple
graph.

Having arrived with this simplified but meaningful graph rep-
resentation of the extreme rain event synchronisation on the Indian
subcontinent we apply the formerly introduced mesoscale graph
measures in order to understand the mesoscale organisation of
modules of similar precipitation.
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Community detection

Figure 42: Partitions for the extreme
rainfall synchronisation derived from
APHRODITE and TRMM precipi-
tation data. White spaces indicate
missing data. APHRODITE is grouped
in six (I–VI) and TRMM data into
seven modules A–G (plus a single
isolated node in its own community
H, highlighted with a black square
and arrow). Contour line of 4500 m
is indicated with dotted to show Ti-
betan Plateau and sea-level with solid
black line. Modules with the same
colour in both data sets have a strong
similarity (J > 0.3, see Tab. 5) and
can be considered representing the
same region. Note that module F is
falling apart into the two modules
IV and VI in the APHRODITE data
set. Most communities are spatially
closed sets of nodes, with some fringe
at the border between modules. But
community III connects the Indian
peninsula with Burma. G consist of
nodes mainly from the Tibetan Plateau
and furthermore a group of nodes in
North Pakistan, as well as a few scat-
tered nodes in Burma. In the TRMM
data set the border between modules
F and G matches the location of the
Himalaya. Furthermore the module C
terminates at the Western Ghats.

APHRODITE

I

II

III

IV
V

VI
4500 m

TRMM

A

B

C
D

G

E
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Firstly, we analyse the community structure of the two extreme
rainfall climate networks. As shown in Fig. 42 both partitions con-
sists of modules that are strongly spatially organised. This is as
expected since precipitation is mostly occurring in a local area,
e.g. in moving weather fronts. Before analysing the location of the
modules and their interplay with the topological and meteorolog-
ical circumstances, we focus on differences and similarities of the
partitions of the two data sets. The usual way for comparing two
modules is the Jaccard index. However, it can only be applied for
modules originating from the same network but the two networks
we consider differ in the number of nodes they consist of. To over-
come this, we pick only every second node (column- and row-wise)
of the TRMM network and match it with the APHRODITE set as
illustrated in Fig. 43. Since oceanic precipitation data is missing for
APHRODITE we have to exclude such data points as well. Con-
sequently, with this procedure we compare networks of the same
size. Furthermore, nodes with the same index are approximately at
the same geographical position, making it reasonable to compare
them as if they were from the same network. Note that the reduced
APHRODITE network was only used for the Jaccard index calcu-
lation and are otherwise fully considered. In Tab. 5 we show the
pairwise Jaccard indexes for all combination of modules A–H from
TRMM and I–VI from APHRODITE. The results are in good agree-
ment with the observations. We can conclude that from looking at
the spatial distribution of the partitions:APHRODITE

TRMM

ocean

Figure 43: Jaccard index calculation
between the modules in the TRMM
and the APHRODITE data is un-
dertaken for a subset of the TRMM
data set: By taking into account only
every second column’s and row’s
nodes we create a subset of the TRMM
nodes that matches the location of
the APHRODITE set. Since this data
misses oceanic precipitation data we
have to exclude such data points as
well, as indicated by the blue area.

The modules and I and A are in very high accordance (J(I, A) ≈
0.8) and both represent the very northwestern region of the consid-
ered region belonging to the territories of Afghanistan and Tajik-
istan. Attaching southernly the communities II and B are matching
well with J(I I, B) ≈ 0.5, we note that there is a minor agreement be-
tween the modules II and F (J(I I, F) ≈ 0.1) due to some joint nodes
in northern Pakistan. The module F, located in the plains in front of
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the Himalayas is an interesting case since it is split up into different
regions in the APHRODITE network, indicated by Jaccard indexes
of 0.1, 0.2, and 0.4 with the modules III, IV, and VI, respectively.
Module III is a spatially segregated module with nodes located on
the Indian peninsula as well as Burma. The matching community
in the TRMM set is E (J(I I I, E) ≈ 0.3) and connects those parts via
the Bay of Bengal, whose data is non-existent in the APHRODITE
set. The modules C and D are both mostly oceanic nodes and show
therefore almost no overlap with any module from APHRODITE,
where those sites do not exist. Interestingly the module C ends
abruptly at the west coast of the Indian subcontinent.

There the Western Ghats are located and act as an orographic
barrier for the rainfall propagation. A similar situation occurs at
the Himalayas (4500 m contour line given in Fig. 42), it clearly sepa-
rates the Tibetan plateau (modules, V and G, respectively) from the
southern regions. This shows that the high mountains segregate the
extreme rainfall events of both sides. However, in the TRMM net-
work community G does not only consists of nodes in the Tibetan
Plateau but also has a cluster of nodes in North Pakistan as well
as a group of few nodes in Burma. The isolated node module H in
North Afghanistan is affiliated with community I in APHRODITE
and therefore, shows minor similarity (J(I, H) ≈ 0.004) with this
module but no other.

Jaccard index TRMM modules
J(i,j) A B C D E F G H

A
PH

R
O

D
IT

E
m

od
ul

es

I 0.795 0.003 0 0 0 0.003 0.007 0.004

II 0.056 0.525 0 0 0 0.085 0.007 0

III 0 0.030 0.069 0.057 0.344 0.112 0.002 0

IV 0 0.002 0 0 0 0.229 0.157 0

V 0.004 0 0 0 0 0 0.569 0

VI 0 0 0 0 0.008 0.352 0.125 0

Table 5: Pairwise Jaccard Indexes J(i, j)
between the modules derived from the
TRMM data set (A–H) and those from
the APHRODITE data set (I–VI). High
J indicates that both modules are at
the same geographical position, J = 0
instead implies that there is no spatial
overlap between the modules. Strong
similarities J > 0.3 are indicated in
bold. Note that the next highest index
J = 0.229 is given for modules IV
and F. But F is already matched with
VI and therefore it would not be an
injective mapping, as wanted in our
case of colouring two communities
from different networks with the same
colour.

Concluding and summarising results from both networks we see
a clear layered structure in the regions of similar rainfall events,
perpendicular to the main wind direction Southwest: C and D form
the oceanic regions, B (II) and E (III), the coast regions where the
moist air first goes onshore, and finally the Indian plains F (IV &
VI) where extreme rainfall occurs when the moist air masses hit
the Himalayas. The division of those layers in western and east-
ern modules indicates the areas of influence of the Arabian Sea
branch and Bay of Bengal branch, respectively. The Tibetan Plateau
G (V) is a separate module since it is separated by the Himalayas as
orographic barrier from the North Indian River Plain. Continental
air masses mainly influence Northeast Pakistan (A, I) and thus a
separated module is formed there.

This mesoscale analysis is an appropriate tool for compar-
ing networks from data sets that gives a simplified but informa-
tive diagnostic on the similarities and differences between them.
Here, the main difference lies in the unconsidered oceans for the
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APHRODITE, accompanied with a splitting of the North Indian
River Plain module F in a western (IV) and eastern (VI) part.

Hubness
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Figure 44: Global hubness for
APHRODITE (upper panel) and
TRMM (lower panel). North Pakistan,
the Tibetan Plateau, and Eastern Ghats
are regions of high hubness in both
data sets. In TRMM the oceanic sites at
the Arabic Sea and Bay of Bengal show
high hubness as well.

Here we analyse the graph measure global hubness. Nodes with a
high hubness indicate that the corresponding site is strongly syn-
chronised with other sites. Since it is a pure local measure it counts
all neighbours and does not take into account the community struc-
ture. We furthermore calculate the local hubness, where we only
count internal edges and compare nodes exclusively with nodes in
the same module.

In the Fig. 44 we show the hubness for both precipitation net-
works. We see that the overall hubness is low h < 20 with some
distinct regions of high hubness: In both data sets Northwestern
Pakistan and the Tibetan Plateau are regions with particular high
hubness nodes. In the TRMM network where oceanic precipitation
is available, we see that Arabian Sea shows higher hubness as well,
although not as high as the indicated continental regions. Inter-
mediate hubness occurs in the southern part of the Bay of Bengal.
Interestingly the Eastern Ghats shows high hubness in the TRMM
network but not in the APRODITE. This indicates that Eastern
Ghats’ neighbours in APHRODITE are mainly oceanic sites that are
missing in TRMM. The formation of the module E, consisting of
the Eastern Ghats and the northern parts of the Bay of Bengal, in
APHRODITE corroborates this hypothesis.
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Figure 45: Local hubness for
APHRODITE (upper panel) and
TRMM (lower panel). In both data sets
the communties show a spatial core-
periphery structure: Sites in the centre
of modules have high hubness whereas
those close to other modules show
lower values. Sites of particularly low
hubness are located at the Himalayas
and the Western Ghats.

The local hubness (see Fig. 45) is an interesting measure of the
precipitation synchronisation since it provides information on
nodes regarding to the importance inside their module. Especially
in the TRMM data it is observable that most modules show a clear
core-periphery structure: Modules consist of a the spatial centre of
nodes with high internal hubness, those nodes are densely con-
nected with each other and referred to as core. Towards the borders
to the other modules the internal hubness decreases since those
spatially peripheral nodes connect not only with the own module
but also to the adjacent module. This indicates a high spatial or-
ganisation of the extreme precipitation events. Compare here with
the results for the regular lattice, a common model to mimic strong
spatial organisation, that shows similar behaviour. Consequently,
regions that are at the borders between two or more modules have
particularly low local hubness. This is especially true for the Hi-
malayas, the Western Ghats, and Southern Pakistan. The later is at
the border of the available data and also effected by the Westerlies
rather than the ISM and therefore only weakly synchronised with
sites in India. The other regions are both known to be orographic
barriers and therefore stop rainfall propagation.

In the TRMM local hubness we see that especially the oceanic
modules C and D show a smooth and clear core-periphery struc-
ture. Continental modules in contrast, especially F and G, located



climate networks – investigating the indian summer monsoon 59

adjacent to the Himalayas, show a rougher structure. This implies
that continental air masses are highly influenced by mountains
ranges on a much smaller spatial and temporal scale than the
oceanic counterpart. This is especially visible for the TRMM based
network that has twice the spatial resolution.

Participation and Dispersion
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Figure 46: Participation for
APHRODITE (upper panel) and
TRMM (lower panel). Participation
is low in the centre of modules and
high at the border of those. Note that
natural barriers as the Western Ghats
and the Himalayas show distinct and
narrow borders, unlike low-elevation
areas.
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Figure 47: Dispersion for APHRODITE
(upper panel) and TRMM (lower
panel). Similar characteristics as for
the participation. Some sites at the bor-
ders show almost maximal dispersion
d = 1, indicating that they are exactly
between two modules. The influential
region in North Pakistan in contrast
does not show increased dispersion
in comparison to participation since it
connects to all modules.

We now use the detected modular structure of the synchronisation
of extreme rainfall events to spot regions that are strongly inter-
connected to regions in other modules and such sites that are only
locally connected. The measures of participation and dispersion
are suited for this analysis and allow us to quantify the influence
of nodes, whether it is exclusively on sites in their own module or
towards other modules.

In Fig. 46 we show the participation p and in Fig. 47 the disper-
sion d for all sites of the two networks. We observe a very strong
core-periphery structure due to localised links: Nodes in the centre
of the modules tend to have minimal participation and dispersion
p = d = 0, whereas nodes at the borders between modules inter-
connect with all adjacent modules and have a high participation p
and up to maximal dispersion d → 1. Such border regions are: Hi-
malayas (as border between the Indian plains), the Tibetan Plateau,
North Pakistan, as well as Burma. However, there are some regions
with high participation that are not located at the border between
modules: The Western Ghats are peripheral for region III of the
APHRODITE data set but only the most northern part is adjacent to
the Pakistanian region II. Nevertheless also the most southern part
of the Western Ghats show almost maximal dispersion. This indi-
cates that the extreme rainfall there is not only synchronised with
the locally close sites in India but with sites in Pakistan, too. The
picture is completed when the oceanic data of TRMM is included:
The Western Ghats do not form a module with the continental In-
dian nodes but with the Arabic Sea. The Arabic Sea itself is closely
connected to the Pakistan coastal regions and therefore a synchroni-
sation of extreme rainfall events is detectable.

Overall we conclude that high participation and dispersion coin-
cide strongly with borders between modules. As discussed in the
preceding section they are themselves shaped by orographic barri-
ers in interplay with the movement of air masses. Measuring par-
ticipation provides further information on how sharp those borders
are: Between modules E and F, for example, the region of nodes
with high participation is quite broad, indicating that no sharp sep-
aration occurs. At the Western Ghats in contrast the region of high
participation nodes is narrow, indicating a clear distinction of ex-
treme rainfall events synchronisation on the eastern and western
side of the mountain ranges.
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Role detection - Unifying the measures
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Figure 48: Participation p and global
hubness h(g) are used for the 2-
dimensional detection of roles of nodes
in the precipitation network. Colour of
nodes indicate their betweenness cen-
trality g. Panel a: Scatter plot for the
APHRODITE data set. Panel b: Scatter
plot for the TRMM data set. Panel
c: Schematic representation of the
roles that have distinguished position
in those climate networks: Hubs are
nodes that are strongly synchronised
with many other sites and connectors
are those that synchronised not only
with nodes in their own module but
also with sites from other modules.
Especially important are regions with
nodes that fall in both categories and
hence connector hubs.

Finally, we analyse the individual nodes contribution to the mesoscale
structure of the in those two extreme rainfall networks. Firstly we
investigate the (h, p)-scatter plots (see Fig. 48). It allows us to clas-
sify nodes into different structural roles and investigate their posi-
tion in the region (see Fig. 50). Additionally we compare our results
with the betweenness centrality measure g.

Scatter plots for both networks show that all nodes are in the
range from connector to peripheral nodes, with the majority being
peripheral. Those nodes with very low participation also tend to
have small to intermediate hubness. The connector nodes in con-
trast are in the range from low to very high hubness. The nodes
with hubness ≈ 0 are nodes that have the mean degree, that in-
dicates that they do not have an outstanding position in terms of
their local influence. Therefore, they must be located at the borders
between modules (see Fig. 49). The connector hubs do not only
show connections to different modules but have also many of those.
Therefore, these nodes are at sites that are strongly influential as
extreme rainfall events at those sites are synchronised with many
other sites from different areas of the region. Interestingly, there are
almost no peripheral hubs detectable. Those would be peripheral
regions that are highly influential in their own module but not in
others.

Investigating the betweenness g, another global measure of influ-
ence, we see that this analysis matches our results: The peripheral
non-hubs tend to show low levels of betweenness since they are
neither locally well connected nor to other modules. Nodes with
higher degree show also increased betweenness due to the better lo-
cal connectivity. Connector nodes with intermediate hubness show
quite high betweenness since the effects of increased local connec-
tivity is combined with the cross module links; letting them lay on
the shortest path between a lot of pairs of nodes. Those are nodes
at the borders between modules (see Fig. 49). Finally the connector
hubs show the highest observed values of betweenness since they
have many long-range connections to other modules that serve as
shortcuts for the shortest paths between nodes that are spatially
distant.

Nevertheless in the TRMM network some nodes with high be-
tweenness do not fall in the class of connector hubs. Those are
nodes that are detected as important by the path based measure
betweenness but not in the mesoscale organisation. We now anal-
yse their position on the Indian subcontinent (see Fig. 50). The red
marked sites are the connector hubs, they are almost exclusively
in North Pakistan. The non-hub connectors are detectable at the
borders between the modules: Of special meteorological importance
are here the Himalayas and the Western and Eastern Ghats. As
discussed above we expect only the connector nodes (red as hubs,
blue non-hubs) to show high betweenness. To test this we plot all
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nodes with high betweenness that do not fall into this category
as purple. We note that there are no of such undetected high be-
tweenness nodes in the APHRODITE data set. Though there are
some in the TRMM set. Those sites are scattered all over the Indian
subcontinent and do not show a certain geographical area that we
might have missed with our tools. Therefore the mesoscale analy-
sis is an appropriate tool for detecting influential regions in such a
interaction network from precipitation data.

Figure 49: Role of connectors illus-
trated on a regular lattice, partitioned
into two modules (blue and black).
Nodes with pink bordure are at the
border between two modules, they
will have increased participation and
are connector non-hubs. Long range
connections, as illustrated with red
arc will lead to increased hubness and
participation for the connected nodes
(yellow bordure) and therefore they
are connector hubs. Border connector
nodes will show higher betweenness
than normal nodes, the connector
hubs will have highest betweenness
since the long-range connections are
shortcuts to other modules.

Discussion

In this chapter we analysed the mesoscale structure of the synchro-
nisation of high precipitation events during the ISM. We accom-
plished this in two steps: Firstly a community detection analysis
and afterwards we analysed the roles that different sites play in this
modular organisation.

We find that the communities are strongly spatially structured
since precipitation occurs mostly in the form of moving rain clouds.
We also showed that the communities detected from two different
data sets show striking similarities, indicating that the encoun-
tered organisation represents features of the actual climatological
phenomenon. The location of the modules is mainly driven by
three factors: (1) Modules are organised in a layered structure from
the Southwest, where the monsoon air masses originate towards
the Tibetan Plateau. (2) Inside this layered structure a division in
western and eastern parts occurs, as the monsoon divides into two
branches, one from the Arabian Sea and the other from the Bay
of Bengal. (3) Borders between modules are furthermore strongly
affected by natural orographic barriers as the Himalayas and the
Western Ghats.

The sites play diverse roles inside this mesoscale organisation:
Most of the nodes do show a low hubness, are located in the core
of modules, and have therefore low participation. Nodes at the
borders between modules show higher participation, making them
connectors. The width of the region of connector nodes enables
us to distinguish sharp and imprecise borders between modules.
There we detect that borders originating from natural barriers as
mountain ranges are sharper than the ones where the two ISM
branches meet.

Furtermore the role detection is used to detect regions that are
very influential during the ISM. Our tools show, in coincidence
with former attempts, that North Pakistan is the area of most im-
pact during the Indian summer since both branches of the monsoon
merge there. Therefore it is synchronised with sites from all over
the subcontinent, resulting in high hubness and betweenness.

Finally the role detection is a primer of centrality in terms of
betweenness. The connector hubs show the highest centrality values
as their long-range connections serve as shortcuts to other modules.
Border nodes between modules show high betweenness as well as
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shortest paths between the modules lead through them.
This is an interesting feature as the detection of all shortest paths

is a computationally very demanding task. The role detection in-
stead is extremely fast, especially when the organisation into mod-
ules is already known.

We conclude that the here presented mesoscale analysis is an
appropriate tool for detecting areas of similar behaviour in climate
data, as well as the characterisation of their borders and the identifi-
cation of particularly influential regions.

connectors hubs

connectors

peripheral hubs

central nodes

APHRODITE

TRMM

Figure 50: Functional roles of nodes:
Red nodes indicate connector hubs,
blue nodes are connectors, orange
hubs without strong participation, the
rare group of peripheral hubs. Purple
sites are nodes with high betweenness
that were not detected by the roles
classification as connector hubs.



The multilayer Airport Transportation
Network

Introduction

Understanding the structure of human mobility networks, espe-
cially traffic infrastructure is of high importance for socio-economic
reasons, including the prediction of pandemics [66]. While a con- [66] Lars Hufnagel, Dirk Brockmann,

and Theo Geisel. Forecast and control
of epidemics in a globalized world.
Proceedings of the National Academy of
Sciences of the United States of America,
101(42):15124–15129, 2004

siderable effort has recently been devoted to the characterisation
of its structure, their multiplex nature has not been considered
appropriately. The air transportation network is furthermore an
interesting study object since it shows scale-free, as well as small-
world characteristics [67]. It inherits a modular structure that is [67] Roger Guimerà, Stefano Mossa,

Adrian Turtschi, and LA Nunes Ama-
ral. The worldwide air transportation
network: Anomalous centrality, com-
munity structure, and cities’ global
roles. Proceedings of the National
Academy of Sciences, 102(22):7794–7799,
2005

shaped by geographical proximity as well as geopolitical factors.
This chapter is organised as follows: Firstly we introduce the data
used in this work. Afterwards we utilise a multilayer variant of the
participation index together with the degree to distinguish the roles
of different airports in the multilayer network. Finally we use this
to show that low cost airlines inherit striking structural differences
in comparison to major airlines.

Multilayer data

The Airport Transportation Network (ATN) is as many traffic net-
works a good example for a network consisting of multiple layers:
Nodes represent airports and links stand for direct flights between
two airports. We distinguish between the different commercial air-
lines and therefore each layer consists of flights by the same carrier.
The ATN is an interesting study object since it has undergone sig-
nificant growth in the last decades and is shaped by a variety of
socio-economical and geographical factors.

Here we will restrict the discussion to the European airport net-
work which consists of n = 450 airports that are approached by
b = 37 different airlines, each forming an individual layer [68]. The [68] Alessio Cardillo, Jesús Gómez-

Gardeñes, Massimiliano Zanin, Miguel
Romance, David Papo, Francisco
del Pozo, and Stefano Boccaletti.
Emergence of network features from
multiplexity. Scientific reports, 3, 2013

data was collected for the year 2011. It consists of quite different
types of airlines; ranging from major airlines as Lufthansa, over
low cost airlines as Ryanair, up to regional airlines as Air Nostrum.
Furthermore it includes Netjets, a business jet rental airline, as well
as TNT and European Air Transport, two cargo airlines. We note
that this data set does not cover the whole worldwide airport trans-



64 nodes in the mesoscale

portation network. Since it is an excerpt some of the results have
to be lighted in this way. Turkey for example, is geographically
peripheral from a Eurocentric perspective, although consideringd
flights to Asia would change the picture.

First of all we want to investigate the separate layers/airlines
that make up the multilayer ATN graph. As previously defined, the
layer size Nm is given as the number of nodes that have a non-zero
degree for each airline m. Therefore it is identical with the number
of destinations an airline flies to. As shown in Fig. 51 the number
of destinations Nm is widely heterogeneously distributed, ranging
from only 35 destinations up to 128 destinations. Taking into ac-
count the different types of airlines; major, low cost, regional, jet
rental, and cargo carrier we detect the following: Major airlines
(flag carriers, or former national airlines) are ranging from a small
number of destinations (Malev Airlines and Iberian, 35) up to very
large (Lufthansa, 106). Same is true for low cost airlines (from Niki,
36 up to Ryanair, 128). Ryanair is also overall the airline with the
highest number of destinations. Regional airlines tend to have small
(Olympic Air, 37) up to intermediate numbers (Norwegian Air
Shuttle, 52) of connected airports since they operate in a spatially
limited region. Netjets is able to provide a very high number of 94

destinations since it offers fractional ownership and rental of busi-
ness jets. The two cargo carriers TNT and European Air Transport
both operate from 53 airports whereof 28 are approached by both
airlines.

In Fig. 53 we show the ATN of six different airlines with the
physical location of their destinations in Europe. Those include
major airlines (Lufthansa, Scandinavian Airlines, and Turkish Air-
lines), as well as low cost airlines (Ryanair and Pegasus Airlines),
and a regional airline (Wideroe). All airlines are spatially organised
and serve more strongly particular parts of Europe. Scandinavian
Airlines for example offers many direct flights between airports in
northern Europe but a smaller amount of destinations in the west,
and almost none to the Balkan or Turkey. This can be formulated as
a core-periphery structure similar to the climate network in the previ-
ous chapter or for the regular lattice model: Layers tend to connect
nodes that are close to each other and are less likely to form edges
between pairs of nodes that are far away. However, airlines do not
connect nodes that are extremely close to each other, e.g. two air-
ports of the same city like London Heathrow and London Luton. In
the climate network spatially adjacent nodes will show similar rain-
fall with high probability since weather is a localised phenomenon
and therefore edges are formed between them. This localisation of
the layers indicates that the different layers give rise to a modular
organisation of the whole multilayer network. In contrast to a nor-
mal modular structure here nodes can be affiliated with multiple
layers, similar to an overlapping community structure, indicating
that those airlines are competing against each other at those air-
ports.
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Figure 51: The European airline
network consists of b = 37 layers, each
one being a single airline connecting
different airports. The size of each
layer Nm is defined as the number
of destination for each airline, thus
nodes with degree km > 0. Airlines
are grouped into four different types:
Major airlines (blue M), low cost
airlines (red L), regional airlines
(cyan R), jet rentals (black J), and
cargo transporters (green C). Airlines
are ordered in decreasing order of
sizes Nm. We note that major airlines
(flag carriers, or former national
airlines) are ranging from a small
number of destinations (Malev Airlines
and Iberian, 35) up to very large
(Lufthansa, 106). Same is true for
low cost airlines (from Niki, 36 up
to Ryanair, 128). Ryanair is also the
airline with the highest number of
destinations. Regional airlines tend
to have small (Olympic Air, 37) up to
intermediate numbers (Norwegian
Air Shuttle, 52) of connected airports
since they operate in a spatially limited
region. Netjets is able to provide a
very high number of 94 destinations
since it offers fractional ownership
and rental of business jets. The two
cargo carriers TNT and European
Air Transport both operate from 53

airports whereof 28 are approached by
both airlines.
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Figure 52: Degree distributions for
four different airlines: Turkish Airlines
shows a clear hub-and-spoke structure
with Istanbul as main, Ankara as
secondary hub and many regional
airports with degree 1. Scandinavian
Airlines is a multinational flag carrier
and shows a less distinct three-folded
hub structure. Ryanair’s home airports
are London Stansted and Dublin,
however the airline operates in a
point-to-point transit as indicated
by many airports with intermediate
number of connections. Wideroe
shows as a regional airline point-to-
point transit with only a small number
of destinations.

A particularly interesting modular structure in interplay with a
scale-free degree distribution is known as hub and spoke: Airlines
maintain highly frequented airports that serve as hubs. This central
airport is then connected to many smaller local airports. Overall
this structure enables a high efficiency in terms of mean shortest
path-lengths. In addition the smaller number of flights in com-
parison with a full graph allows more efficient use of resources.
For example, planes are more likely to fly at full capacity from the
central airports and can fly multiple times a day.

This organisation is especially observable with airlines from
Turkey: For both, Turkish Airlines and Pegasus Airlines, Istanbul
serves as the main hub that connects to many domestic and inter-
national locations (see Fig. 52). The domestic airports are mostly
peripheral airports with only a small number of airlines serving
them. In contrast the international destinations are mostly hubs
in other countries in order to enable a high number and fast con-
nection flights. Here, the two Turkish Airlines differentiate in their
strategy, too: The flag carrier Turkish Airlines offers flights to many
European cities, especially capitals as Madrid or Dublin, whereas
the low cost airline Pegasus focuses on the central European region,
where Turkish emigrants generate a high demand for flights.

The example of the two Turkish carriers shows that the interplay
of the different layers is truly a complex one that is driven by a vari-
ety of processes: On the one hand airlines are competing with each
other for passengers on the same flights (e.g. the direct flight Istan-
bul – Ankara). On the other hand the infrastructure provided by
other airlines can be used to allow passengers to catch connecting
flights. Therefore both airlines connect to European hubs in order
to allow passengers to change there to flights to all other European
destinations. This creates symbiotic effects since even peripheral
regions are connected to each other with only a small number of
steps as indicated by the small average path-length of L = 2.7.

Scandinavian Airlines is the flag carrier of Denmark, Norway,
and Sweden. Therefore it shows a three-folded hub structure with
airports in all three capitals Copenhagen, Oslo, and Stockholm.
Lufthansa is the formerly owned by the German government and
therefore focusses on the German market: The hub structure is
less distinct with major airports in industrial strong regions in
South Germany (Munich), West Germany (Frankfurt), and Belgium
(Brussels).

Ryanair is the most successful low cost airline in Europe. It cov-
ers destinations in all parts of Europe with an emphasis on central
Europe. In contrast to the other airlines it does not show the hub
organisation but rather a point-to-point transit: Most destinations
are connected by direct flights and changing the flight at a central
hub is not necessary. For example many direct connections are of-
fered from the British Isles to Spain and Germany, and also between
those two regions. In a hub and spoke structure as employed by
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Lufthansa there are no direct flights between Spain and Britain.
Despite not using a central hub Ryanair also uses London Stansted
and Dublin as home airports with an increased number of con-
nections. However, Stansted connects only with 50 % of Ryanair’s
destinations, Istanbul instead with 95 % of Turkish Airlines’ and
80 % of Pegasus Airlines’ airports. This makes Istanbul truly a hub
with a centralised position for those two airlines.
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Figure 53: Six layers (airlines) of the
multilayer ATN are shown with the
physical location of the airport nodes
in Europe. Node’s size and colour
indicate their multilayer degree k(ml).
Nodes are connected if there is a direct
flight between the two airports. Upper
panel shows three major airlines: Cyan
lines indicate flights by Lufthansa, blue
lines flights by Scandinavian Airlines,
and red lines flights by Turkish Air-
lines. All three airlines are spatially
organised and show a core-periphery
structure known as hub and spoke:
For Turkish Airlines Istanbul is the
hub that connects with other Turk-
ish airports as well as international
destinations. Scandinavian Airlines
shows a less distinct hub structure
since it is a multinational cooperation
and therefore has hubs in the capitals
Copenhagen, Oslo, and Stockholm.
Lufthansa focuses on the German mar-
ket. The hub structure is less distinct
with major airports in industrial strong
regions in South Germany (Munich),
West Germany (Frankfurt), and Bel-
gium (Brussels). Lower Panel shows
two low cost airlines and a regional
airline: Cyan lines indicate flights by
Ryanair and red lines flights by Pe-
gasus airlines, both low cost airlines.
Ryanair is the airline with the highest
number of connected airports (128)
and connects all parts of central and
western Europe. Interestingly they
do not fly to airports in the periph-
eral regions of Scandinavia as well as
Turkey. Pegasus Airline is a Turkish
low cost airline and has as Turkish
Airlines Istanbul as main hub. From
there it connects to domestic airports
as well as cities in central Europe. Due
to the same regional hub it is for many
flights a direct competitor with the ma-
jor airline Turkish Airlines. Wideroe, a
Norwegian regional airline (indicated
with green lines) connects peripheral
airports in Norway and a small num-
ber of international destinations in
the proximity as Scotland or Sweden.
Partially Wideroe and Scandinavian
Airlines are competitors for Norwe-
gian flights, however the major airline
has way more international flights and
the regional airline instead provides
better coverage of inter-norwegian
flights.
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Participation and degree of individual airports

ultra-peripheral

peripheral

connector

kinless

p ∈ {0} [0, 1
3 ) [ 1

3 , 2
3 ) [ 2

3 , 1)
# 53 185 165 17

Table 6: Participation of the airports
grouped into four distinct groups,
ultra-peripheral nodes, peripheral
nodes, connector nodes, and kinless
nodes.

Now we analyse the position each airport plays in the multilayer
structure of the ATN. For this we use a two-dimensional mapping
similar to the ones used for the mesoscale organisation in commu-
nities: On the one side we take the multilayer degree k(ml) and on
the other side the multilayer participation p(ml). The first measures
the number of airports a city is connected to with multiple counts
for flights by different airlines. The participation instead measures
how distributed the airports flights are among the different airlines:
p(ml) = 0 means an airport is approached by only a single airline,
whereas p(ml) = 1 indicates that a variety of airlines is flying to this
location.

In Fig. 54 this mapping is shown in the upper panel in a scat-
ter plot as well as with the airports at their spatial location in the
lower panel. First we notice that the participation ranges from
ultra-peripheral nodes (p = 0) to kinless nodes (p > 2/3). This
indicates a wide structural variability the nodes play in the ATN.
The ultra-peripheral nodes tend to have low multilayer degrees
k(ml). Those are mostly small, regional airports that are only con-
nected by one airline in order to provide accessibility of this region
by plane. They are particularly observable in geographically pe-
riphery regions of Europe as Scandinavia or Turkey. However, the
two ultra-peripheral airports with the highest degree are interesting
special cases: Frankfurt-Hahn Airport (EDFH) is a major airport
for Ryanair, offering 28 different destinations, but none for other
airlines, since those use the close Frankfurt Airport (EDDF). Liège
Airport (EBLG) offers 35 different destinations. Since it is a cargo
airport no passenger airline is flying here, but only TNT Airlines,
leading to minimal participation p(ml) = 0.

The category of peripheral nodes (p ∈ (0, 2/3)) is the largest
with 185 airports (see Tab.6. Those are connected by different air-
lines but still show a stronger affiliation with some airlines than
others. An example is Stockholm Skavsta Airport (ESKN), a low
cost airport 100 km outside of Stockholm. It is mainly used by
Ryanair but furthermore by Wizz Air, a Hungarian low cost airline
that specialises in using secondary airports all over Europe. But no
other airlines flies there, leading to a small participation. Istanbul
Airport (LTBA) is the only example of an a peripheral hub: It is
used strongly by the two Turkish air carriers and to a much less
extend by the other European airlines.

165 nodes fall in the category of connector nodes that are used
by different airlines to similar amounts. An example of non-hubs
in this category is Sarajevo International Airport (LQSA). It is used
by a variety of different airlines but none of them offer more than
three destinations. Therefore the degree k(ml) stays low whereas the
participation p(ml) is fairly high. Many of the well known airports
are in this category but show a high degree. Those include London
Heathrow (EGLL), Frankfurt Airport (EDFF), and Madrid Airport
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(LEMD). Those airports are frequented by a high number of differ-
ent airlines with a high number of flights. The Amsterdam Airport
(EHAM) is the airport with the highest degree and falls into this
category, too.

The fourth category of kinless nodes is a small (only 17 airports)
but interesting one, since those airports are used by an extremely
high number of different airlines. The node with the highest par-
ticipation is the Bucharest Airport (LROP) and the second largest
Tel Aviv Airport (LLBG). The latter one is used by a high number
of European airlines since it provides access to the middle eastern
region and is known for its high level of security. However, the long
distance to Europe does not make multiple destinations for each
airline necessary, leading to a low degree. Nodes with higher de-
gree in this category are frequented by many different airlines from
a high number of destinations. Those include Milan (LIMC), Venice
(LIPZ), and Malaga (LEMG). All of those airports are so called sun
and beach locations – Passengers from all over Europe fly there for
beach holidays. The demand to fly there is so high that many air-
lines fly to this destinations from a variety of airports. The node
with the highest degree in this category is Barcelona (LEBL), one of
the world’s leading touristic centres.

Altogether we can conclude that the airports fulfil a large variety
of roles in the multilayer ATN: Nodes with low degree and low
participation are small, regional airports. Nodes with higher degree
tend to be connected by different airlines as connectors. However
some nodes can be classified as peripheral hubs since they are
largely used by a particular airline. Most interestingly the nodes
with high degree and high participation are holiday destinations in
southern Europe and many different airlines are competing against
each other for customers.

Characterising airlines via mesoscale measures

After analysing the different role each airport plays in the ATN
we use this information to get an insight in the organisation of the
different airlines. For this purpose we calculate the mean mutlilayer
participation 〈p(ml)〉α and mean mutlilayer degree 〈k(ml)〉α for each
layer α as the mean values for each node a layer connects to

〈p(ml)〉α =

 ∑
i|ki,α>0

p(ml)
i

/Nα (34)

〈k(ml)〉α =

 ∑
i|ki,α>0

k(ml)
i

/Nα. (35)

Thus we receive summarising information to what kind of airports
the different airlines tend to connect to. In Fig. 55 we show those
for all 37 different airlines and distinguish between the five types
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Figure 54: Multilayer participation
p(ml) and degree k(ml) for all airports
in the ATN. Upper Panel: Shown as a
scatter plot. Participation ranges from
ultra-peripheral nodes (EBLG, Liège)
to kinles nodes (LROP, Bucharest).
Majority of nodes show intermediate
participation. Airports with high
degree tend to have intermediate
participation and are for example
Amsterdam (EHAM), Madrid (LEMD),
and Barcelona (LEBL). Palma de
Mallorca (LEPA) and Milan (LIMC)
can be classified as kinless hubs since
they show high degree with also high
participation. Istanbul (LTBA) is the
only example for a peripheral hub due
to the peripheral location in Europe.
Lower Panel: Participation and degree
of each airport illustrated at their
physical location. Size of dots indicate
degree and colour the participation
from zero (magenta) to 1 (cyan).
Clearly we notice core-periphery
structure in Europe: Airports in
central Europe tend to have higher
participation values than nodes in
the periphery regions as Turkey or
Scandinavia. But note that small
airports and only a small number of
connections are spread out all over
Europe (little red dots). Furthermore
we detect that especially the airports in
southern Europe (Spanish coast, Italy)
show high participation. This indicates
that many different airiness are flying
there and competing for customers.
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of airlines. First of all we note that most airlines show intermedi-
ate values for the mean participation 〈p(ml)〉 ≈ 0.5. This is due
to the fact that this is the largest group, and furthermore the high
degree nodes are mostly in this, as well. However three airlines
show lower values. The regional Norwegian airline Wideroe has the
lowest mean participation and at the same time also the minimal
mean degree. This is caused by the peripheral location of Norway
in Europe: Most destinations are small regional airports only used
by Wideroe and therefore having p(ml) = 0 with also a small de-
gree k(ml) since it is not economically feasible to connect such a
sparsely inhabited region with many flight routes. Same is true
for Olympic Air, a regional airline from Greece. They fly to many
regional airports on islands in the Aegean Sea that are not used
by other European Airlines, resulting in low mean values for both
indexes.

The third airline that is clearly distinguishable from the main
field is Ryanair. Despite flying to many destinations in central
Europe it shows low participation and degree. Ryanair is known
to use many secondary airports in order to minimise flight costs
that are much higher for major airports. Often they are the only
(Frankfurt Hahn) or almost single (Stockholm Skasta) airline at
those airports in the outskirts of the cities. Therefore the degree and
participation of those locations is particularly low.

The highest values of participation and degree are achieved by
the major airlines Iberia and Swiss. That means that those two con-
nect airports that are heavily used by many different airlines. Other
major airlines tend to show high mean index values in comparison
to the regional and low cost airlines. This indicates that flag carriers
can afford to fly to more expensive destinations since they charge
more than low-cost airlines. The latter ones have to reduce their
operating costs and therefore switch to smaller, less frequented
airports that are cheaper to fly from.

Additionally we detect the influence of the attractiveness of the
Spanish holiday regions at the Mediterranean Sea. For both groups,
major and low cost airlines, the airlines with highest indexes are
Spanish airlines, the flag carrier Iberia and the low cost Vueling
Airlines. Both airlines connect many Spanish airports and those are
highly used by other airlines, as shown in the foregoing section.
Therefore the Spanish airlines show high mean values.

In contrast the major airlines with the lowest participation are
Turkish Airlines, Finnair, and Scandinavian Airlines. Those mainly
operate in regions that are spatially peripheral in Europe and show
therefore particularly low participation.

Discussion

Analysing the multilayer participation and degree of the nodes we
see that airports inherit a wide diversity of roles in the European
ATN. Those range from peripheral hubs over connector nodes to
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Figure 55: For each layer (airline) we
show the mean value of multilayer
participation 〈p(ml)〉 and multilayer
degree 〈k(ml)〉. Upper panel shows
for all 37 airlines and lower panel an
excerpt of the region where most air-
lines fall. Major airlines are indicated
with blue dots, low cost airlines with
red crosses, regional airlines with cyan
triangles, cargo airlines with green
squares, and the jet rental service with
a black diamond. Most airlines show
intermediate mean participation values
≈ 0.5. Lowest mean values for both
degree, and participation are reached
by Wideroe and Olympic, two regional
airlines, that are focusing on Norway
and Greece respectively, two periph-
eral regions in Europe. Furthermore
Ryanair shows low mean participation
values since they often fly to small
cheap airports that are not used by
other airlines. Overall it is detectable
that regional and low cost airlines
show lower mean values for participa-
tion and degree for this reason. Major
airlines in contrast use frequently
used, big airports that are contacted by
many other airlines. Those show high
multilayer participation. Additionally
the geographical position in Europe is
important: The major airline with low-
est participations are Turkish Airlines,
Finnair, and Scandinavian Airlines, all
three originate from peripheral regions
in Europe and therefore have small
airports as destinations that other air-
lines do not connect to. In contrast the
major airline with highest participation
and degree is Iberia, the flag carrier
of Spain. It therefore connects all the
airports in the Spanish holiday regions
that have high participation values
themselves. This effect also influences
the regional and low cost airlines: the
low cost airline with highest degree
and participation is Vueling Airline, a
Spanish low cost airline. Cargo carriers
and the Jet rental service show inter-
mediate values for both participation
and degree.
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kinless non-hubs. A variety of social-economical and geographical
circumstances triggers those: Firstly the spatial location in Europe
is influencing the amount of airlines that are flying to a destination,
with central regions being more used than peripheral as Norway.
Secondly the southern holiday regions in Spain and Italy are fre-
quently used by many different airlines since customers from all
over Europe want to spend their vacations there. Furthermore we
detect that low cost airlines as Ryanair tend to use secondary air-
ports that are not used by major airlines. This reduces the operating
costs for the airlines, allowing them to make inexpensive tickets
available to their customers.

We conclude that the participation approach is suited for the
analysis of the multilayer nature of networks. It allows to distin-
guish between nodes that are exclusively contributing to a single
layer from those that are meaningful in many or all layers. This
type of analysis is a novel approach that is extendable to many
different fields of networks science.



Summary and discussion

In this thesis new measures to uncover the contribution that indi-
vidual nodes make in modular networks or in networks with an
a priori classification due to meta-information of the system have
been described. This approach uses four descriptors that help map-
ping every node’s contribution. On the one hand, local and global
hubness indices parametrise the relevance of nodes locally within
their community and globally on the whole network. On the other
hand, we have proposed measures to evaluate how distributed are
the links of a node among the communities. Participation vectors
representing the likelihood of nodes to belong to each community
have been introduced; these account for inhomogenous relative
sizes of the communities. Information in the participation vectors is
reduced into two scalar indices. The dispersion index characterises
how difficult it is to classify a node in one and only one community
and the participation index indicates how uniformly are the links of
a node distributed among all the communities.

We have illustrated the use of the measures applying them to
both synthetic and empirical networks. The example graph in
Fig. 13 has been designed to contain nodes playing many differ-
ent roles. In comparison with the results from previously defined
frameworks, we show that only ours is able to distinguish the rich-
ness of roles that nodes take. Results in random and scale-free
networks on the one hand, and in modular networks on the other
hand, show fundamental differences between them. These exam-
ples demonstrate how the outcome of the participation and disper-
sion indices differ when the community structure is well-defined or
not.

Analysis of empirical neuronal data has shown that our method
is able to detect mesoscale features that are important to the in-
formation processing of those structures: on the one side a strong
community structure is indicated by the presence of many nodes
with very low participation values. These are the sites of segre-
gated information processing. On the other side the hub structure
is similar to a SF network organisation. Importantly those hubs
are connector or kinless hubs, showing that they are able to access
information from all the different modules in order to combine
and integrate it. The coexistence of integration and segregation
is fundamental for the successful handling of information from
multisensory input and both principles occur at multiple scales in
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Comparison with previous approaches

The framework here proposed builds upon previous efforts to char-
acterise the roles that nodes take in modular networks: the func-
tional roles framework introduced in Guimerá & Amaral [14] [15]
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of the two frameworks is that both assume all communities to be
of the same size. While this is a reasonable approximation for large
networks containing several large and near-to-homogeneous com-
munities, many real networks are small or contain inhomogeneous
communities.

Here, we have taken a probabilistic approach and evaluated the
likelihood of a node to belong to a community that depends not
only on the degree of the node but also on the size of the commu-
nity. Stacking our participation vectors would lead to a matrix sim-
ilar to the contribution matrix which would additionally account
for the inhomogeneity of communities. We have also proposed a
measure of hubness that is consistent with the common and origi-
nal understanding of hubs, say, that the degree of hubs in scale-free
networks largely deviates from the expected, narrow degree dis-
tribution of random graphs. We have defined the hubness of a
node as the difference between its degree and the typical degree
distribution in equivalent random graphs. This definition allows
to compare the results out of different networks under a common
statistical baseline. Additionally, we have shown that the hubness
is bounded by finite-size effects depending on the size and on the
density of the (sub-)networks.

Comparison with small world effect

Figure 56: Network consisting of two
separated modules (red and blue)
that are cross-connected with three
shortcuts (black edges). The network
does not show a standard small-world
effect since no node has clustering
C>0. Nevertheless the shortcuts lead
to an effect similar to the small-world.
This can be detected by an increased
participation p for the nodes with
shortcuts.

One of the most famous discoveries in modern graph theory was
the small-world effect. Roughly speaking Watts and Strogatz showed
that RL networks with high clustering are likely to show shortest
path lengths similar to random graphs with randomisation of only
a small number of edges.

The neuronal networks discussed in this work also show this
small-world effect. The segregated modules show high clustering
and the integration hubs are the shortcuts that enable short average
path lengths. However, since we are tracking the contribution of the
nodes in the mesoscale we do not compare the clustering (a local
graph measure) with the average path length (a global measure).
Nodes that have shortcuts are likely to show high participation
p, since they connect to far-away modules. Nodes with only local
neighbours instead show minimal participation p = 0 since all
neighbours are in the same module. Therefore a wide distribution
of participation p is a sign of small-world networks with nodes
that range from locally organised to long-range connectors. Fur-



summary and discussion 77

thermore participation is able to detect small-world like effects for
networks that have a global transitivity of 0, in case no triads exist,
see Fig. 56 for an example of a graph with no triangles. Assume
this network is created from two separated modules (red and blue)
and afterwards the black edges are introduced as shortcuts. The
participation of the linked nodes will be increased, indicating that
they connect to the other module. However, a standard small-world
detection is not possible since all nodes have clustering Ci = 0.

Outlook

Future challenges of the formalism are its application to weighted
or signed networks. From a technical point of view, we note the
potential of participation vectors to improve community detec-
tion methods because they are ideal tools to identify misclassified
nodes. This information can be used to switch nodes accordingly
until the partition minimising the number of misclassified nodes
is reached. Interestingly the framework of multilayer networks is
also applicable to time dependent networks. For this the layers are
arranged in temporal order, each indicating a discrete time win-
dow and edges are present if there is a connection between a pair of
nodes at this time. The multilayer participation vector approach is
then able to distinguish nodes that are active only at distinct times
from those that are active at all times.

Conclusion

The tools presented in this thesis give additional insights on the
mesoscale of networks. This reaches from the measurement of the
contribution of single nodes’ role in the community structure up to
the core-periphery structure of spatially embedded networks. Fur-
thermore the application to multilayer networks can give insights
in the structural differences of single nodes or whole layers. Those
tools are applicable to all kinds of data sets and hopefully are able
to decipher structure and function in various kinds of networks.





Appendix

Louvain Method

There is a wide range of community detection algorithms available.
Her we used the Louvain-method [33] in a Matlab implantation [34]. [33] Vincent D Blondel, Jean-Loup

Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal
of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008

[34] Inderjit S. Jutla, Lucas G. S. Jeub,
and Peter J. Mucha. A generalized
louvain method for community
detection implemented in matlab.
http://netwiki.amath.unc.edu/GenLouvain,
2011-2012

As most current current community detection methods it optimises
the modularity quality function

Q =
1

4M ∑
ij

(
Aij −

kik j

2M

)
δc(i),c(j), (36)

as introduced before.
The Louvain method is extremely fast, interestingly its limi-

tations are given by memory availability and not computational
time, as most other algorithms. For a benchmark network with 118

million nodes finding the partitioning took only 152 min. For this
24 GM of memory were sufficient. This method is also suited to
identify hierarchical organisation of modules, however this was not
used in this work. It also is able to treat weighted networks.

In Fig. 57 the steps of the algorithm are illustrated and we ex-
plain them now in more detail: The algorithm is divided into two
phases that are repeated iteratively. Each repetition of those two
phases is called a pass. Starting with a network of n nodes we firstly
assign each node a separate community. Thus in this initial parti-
tion there are exactly M = n modules.

In the first phase (modularity optimisation) for each node i we
consider the neighbours j of i and we evaluate the gain of modu-
larity ∆Q from removing i from its community and by placing it in

Figure 57: Visualisation of the steps
of the Louvain-algorithm. Each pass
is made to two phases: One where
modularity is optimised by allowing
only local changes of communities;
one where the communities found
are aggregated in order to build a
new network of communities. The
passes are repeated iteratively until no
increase of modularity is possible. See
original description of this algorithm
in [34].
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the community of j. The node i is then placed in the community for
which this gain is maximum, but only if this gain is positive. This
process is applied repeatedly until no further improvement can be
achieved. Note that nodes are usually considered more than once
for the swapping until the local maximum of modularity is reached.
The order in which the nodes are considered for changing the mod-
ule might change the resulting community structure and therefore
the algorithm is non-deterministic. Running the algorithm multiple
times for our networks resulted in only minor changes i the final
partitions.

In the second phase of the algorithm (community aggregation) a
new network whose nodes are the communities found during the
first phase is created. Weights of the links between the nodes are
given by the sum of the weight of the links between nodes in the
corresponding two communities. This includes self-loops. Now a
pass is completed and the first phase might be reapplied in order
to receive a hierarchical clustering. Note that the first pass takes
almost all of the time since the network size decreases with each
pass.

Since we are only interested in a single partition with maximum
modularity we use the partition received after the first pass.

Analytical expressions for participation and dispersion

We want to derive analytical expressions for the participation p
and dispersion d for a given participation vector P of a single node
(for simplicity we dropped the node index i). As introduced before
this is a vector with M elements that are normalised to ∑ Pi

M
i=1.

M is the number of modules in the network and the participation
vector P will have exactly Mc non-zero elements, where Mc is the
number of modules the node is connected to. Thus P will have
M−Mc = K zeros. For the dispersion d only the non-zero elements
are considered, whereas for the participation p all elements are
taken into account, indicated by the reduced participation vector P′.
The formulas for participation p and dispersion d then read

p = 1− σ(P)
σmax(M)

= 1− M√
M− 1

σ(P) (37)

d = 1− σ(P′)
σmax(Mc)

= 1− Mc√
Mc − 1

σ(P′). (38)

Where σ is the standard deviation in the definition as the second
moment of a set of n values X = {x1, x2, ..., xn} about their mean µ

σ(X) =

√
1
n

n

∑
i=1

(xi − µ)2. (39)

Now let us investigate the behaviour of the standard deviation and
come back to the initial dispersion and participation later on. Since
the participation vector is normalised the mean of its elements is
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given by

µ(P) = ∑ Pi
M

=
1
M

(40)

and for the reduced participation vector

µ(P′) =
∑ P′i
Mc

=
1

Mc
. (41)

Let us now focus on the standard deviation of the reduced partici-
pation vector P′ since the analysis of the full one will be a straight-
forward extension. Plugging its elements and the mean into eq. 39

leads to

σ(P′) =

√√√√ 1
Mc

Mc

∑
i=1

(
P′i −

1
Mc

)2
(42)

=

√√√√√√√√√ 1
Mc

− 2
Mc

Mc

∑
i=1

(P′i )︸ ︷︷ ︸
=1

+
Mc

∑
i=1

(P′2i ) +
Mc

M2
c

 (43)

=

√√√√ 1
Mc

(
− 1

Mc
+

Mc

∑
i=1

(P′2i )

)
=

√√√√√√− 1
M2

c
+

1
Mc

M

∑
i=1

(P2
i )︸ ︷︷ ︸

=χ

. (44)

We note that the standard deviation of such a normalised vector
is fully defined by the sum over its squared elements χ, where we
may sum not only over the elements of the reduced participation
vector but over all of the full vector since the additional elements
are 0. The standard deviation for the full participation vector is
similarly arrived but we have to take into account the changed
mean, as well as the zero elements

σ(P) =

√√√√ 1
M

(
Mc

∑
i=1

(
P′i −

1
M

)2
+ (M−Mc)

(
0− 1

M

)2
)

(45)

=

√
1
M

(
χ− 1

M

)
. (46)

Again, the standard deviation will depend only on the sum of
the squared elements. Using this information we derive simple
formulas for the participation and dispersion

p = 1−
√

M
M− 1

(
χ− 1

M

)
(47)

d = 1−
√

Mc

Mc − 1

(
χ− 1

Mc

)
. (48)

We now may express χ(d), substitute it into p(χ) to receive the final
form

p(d, M, Mc) = 1−
√

M
M− 1

(
1

Mc
((Mc − 1)(1− d)2 + 1)− 1

M

)
. (49)
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The maximum participation is then reached for Mc = 2

p+(d, M) = p(d, M, 2) = 1−
√

M
M− 1

(
1
2
((1− d)2 + 1)− 1

M

)
. (50)

Mean participation for flat modular graphs

We calculate the mean participation for flat modular graphs consist-
ing of M modules of equal size n′. Internal connections occur with
a probability pin and external to nodes in other modules with pex.
Similar to a random ER network the number of neighbours each
node has in each module are distributed with binomials, where
the internal degree is maximal n′ − 1 and the number of nodes in
each other module at most n′. From the distribution of the number
of neighbours in each module the distribution of the participation
vectors P follows directly. For simplicity we restrict the discussion
to the behaviour of the average node, in a mean field like approach.
The mean number of neighbours a node has in its own module is
given by (n′ − 1)pin and for other modules n′pex. The unnormalised
participation vector is then given simply by

〈P〉 =

pin, pex, . . . , pex︸ ︷︷ ︸
(M−1) times

 , (51)

since we divide the number of neighbours by each modules size.
The normalisation factor is then given by 1/Σ = pin + (M− 1)pex

and according to eq. (48) the mean participation is then exactly

〈p〉 = 1−
√

M
M− 1

((( pin
Σ

)2
+ (M− 1)

( pex

Σ

)2
)
− 1

M

)
. (52)

Now we want to look at the two extreme cases: (1) A network of
separated modules pex = 0 and (2) a random network pin = pex >

0. For (1) the participation vector consists of only a single non-zero
element pin and due to normalisation Σ = pin we end at 〈p〉 = 0
as we expect from nodes that are not able to connect with other
modules.

The ER case is more interesting and the participation vector
consists of identical elements 〈P〉 = ( 1/M︸ ︷︷ ︸

M times

). Thus the sum of

the square elements becomes χ = M · 1
M2 = 1/M and the mean

participation reaches the maximal value of 〈p〉 = 1 and indicates a
vanished modular structure.
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